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Multi-view gait recognition with joint local
multi-scale and global contextual spatio-temporal

features
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Abstract—Existing gait recognition methods are capable of1

extracting rich spatial gait information but often overlook fine-2

grained temporal features within local regions and temporal con-3

textual information across different sub-regions. Considering gait4

recognition as a fine-grained recognition task and each individual5

exhibits uniqueness in their movements across different temporal6

sequences, we propose a local multi-scale and global contextual7

spatio-temporal (LMGCS) network for gait recognition. It divides8

the whole gait sequence into sub-sequences with multiple spatio9

resolutions and extracts multi-scale temporal features. We extract10

the temporal context information of different sub-sequences with11

the transformer, and all sub-sequences are fused to form global12

features. Furthermore, the loss function that combines the triplet13

loss function and cross-entropy loss function is utilized to prompt14

the proposed model to fulfill the gait recognition. The proposed15

method achieved state-of-the-art results on two popular public16

datasets. It achieved rank-1 accuracy of 98.0%, 95.4%, and 85.0%17

on the three walk states of the CASIA-B dataset and 90.9% on18

the OU-MVLP dataset.19

Keywords—Gait recognition, Fine-grained recognition, Multi-20

scale feature, Temporal context information.21

I. INTRODUCTION22

GAIT recognition has garnered significant interest from23

researchers and engineers in computer vision due to its24

promising applications in human identity verification [1]–[3].25

Although gait recognition has attracted the interest of many26

researchers [4]–[6], it is still a challenging task because gait27

features are greatly influenced by clothing, environment, and28

viewing angles. The differences between the gait sequences of29

different individuals are very subtle.30

To alleviate the difficulty of cross-view recognition, the31

methods from the generative perspective attempt to convert gait32

sequences of different angles to the same angle or to use a gen-33

erative model to expand the gait dataset [7]–[9]. For example,34

Ben et al. [10] proposed a coupled patch alignment algorithm35

that effectively matches a pair of gaits across different views.36

Huang et al. [3] proposed a hierarchical feature aggregation37

strategy for discriminative feature extraction. These methods38

aim to extract more discriminative gait feature representations39
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from different viewing angles. Previous methods for gait 40

feature extraction usually consist of spatial feature extraction 41

and temporal feature extraction. The key factor in determining 42

the recognition effect is how to extract effective spatial and 43

temporal features simultaneously. 44

Currently, many methods have been proposed to extract 45

spatial features [11]–[14]. They consider that different body 46

parts have different motion patterns and divide the gait se- 47

quence into different sub-regions in space. Each sub-region 48

is sent to a different network to extract its spatial features 49

based on different motion patterns. For example, Lin et al. [14] 50

utilized the global and local spatial features simultaneously 51

and fused them to obtain more robust feature representations. 52

This method focuses solely on spatial features and does not 53

incorporate temporal information, which limits its ability to 54

capture the dynamic characteristics of the data. 55

To mitigate the limitations mentioned above, some other 56

methods focus on feature extraction in the temporal dimen- 57

sion [13], [15]–[18]. Huang et al. [1] proposed a hierarchical 58

feature aggregation strategy for discriminative feature extrac- 59

tion. They used multi-layer 3D convolution or LSTM to extract 60

the temporal features of gait, among which treat the time 61

series as a whole and extract global temporal information [13], 62

[15], [16]. Meanwhile, some methods [17], [18] focus on 63

capturing fine-grained local temporal information in gait by 64

extracting temporal features at multiple time scales and fus- 65

ing these multi-scale features to obtain more discriminative 66

representations. However, these methods either only focus 67

on global temporal features or only focus on local temporal 68

features. We believe that as gait is a fine-grained movement 69

pattern, extracting gait features only from a global perspective 70

would ignore local detailed temporal information that is more 71

representative of identity. Similarly, focusing only on local 72

temporal features will ignore the global context information 73

of different regions, which is important for discrimination. 74

By observing the entire gait movement, we consider that 75

people tend to focus on specific local frames, where they pay 76

closer attention to the fine-grained gait features in each seg- 77

ment and derive identity information from consecutive frames. 78

Meanwhile, more discriminative gait features can be obtained 79

by integrating the contextual information from different local 80

segments. According to the voting results of 7 volunteers, 81

people usually focus on local segments where the foot reaches 82

its maximum height off the ground, where the foot just touches 83

the ground, or where the arm is at its highest point, etc. They 84

then integrate the contextual information from these segments 85
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Fig. 1. The gait silhouette images extracted from a 90° view of pedestrians
walking normally in the CASIA-B dataset. The color red signifies a higher
concentration of personal identity information within the current gait data,
while blue indicates a lower concentration of personal identity data.

to make their final judgment. As shown in Fig. 1, the red bar86

indicates that the current gait moment contains a higher amount87

of personal identity information, while the blue bar signifies a88

lesser amount of such information.89

The above observations inspire us to propose a local multi-90

scale and global contextual spatio-temporal (LMGCS) network91

to mine both the local multi-scale features and the global92

spatio-temporal features with contextual information. Firstly,93

since gait recognition is a fine-grained classification problem,94

the information crucial for identity recognition often appears95

in a few key adjacent frames. Therefore, we propose a local96

multi-resolution feature extractor (LMFE) to mine the fine-97

grained temporal features. We divide the entire gait sequence98

into many short sub-sequences. Within each sub-sequence,99

we construct a special structure to focus on the local region100

and extract fine-grained identity information. A multiple scale101

scheme is utilized to extract rich local features. After each102

branch extracted its own fine-grained features, we designed103

a multi-branch feature fusion (MFF) module to combine the104

features from different resolutions, which enriches the feature105

diversity and the representability of different branches. Then,106

we emphasize the importance of the contextual information107

for different sub-sequences. Since different persons’ walking108

habits are different, the gait contextual relationship should109

be unique for each person during the walking process, and110

learning this gait contextual relationship is beneficial for the111

task of gait recognition. Previous research usually used max-112

pooling to extract global temporal features [12], [19], which113

ignored the contextual relationship between sub-sequences.114

Unlike previous methods, we propose a global self-attention115

feature extractor (GSFE) with the transformer structure to learn116

the contextual information between sub-sequences and employ117

the learned contextual relationship to adaptively fuse the118

feature from sub-sequences. Finally, we employ the triplet loss119

and cross-entropy loss to refine the surgery on the subspace,120

which enhances both inter-class and intra-class relationships.121

The main contributions of this paper can be summarized as122

follows.123

1) A local multi-resolution feature extractor (LMFE) is124

proposed to capture the fine-grained temporal features of each125

sub-sequence under different resolutions, which is customized126

for the time series fine-grained classification problem of gait127

recognition.128

2) To enhance the diversity and representability of spatio-129

temporal features, we propose a multi-branch feature fusion130

(MFF) module. This module facilitates features from one res-131

olution branch to fuse with features from branches of different132

resolutions based on the positions of their sub-sequences. 133

3) A global self-attention feature extractor (GSFE) is in- 134

troduced to capture the contextual information between sub- 135

sequences globally and employ the learned contextual relation- 136

ship to extract more discriminative gait features. 137

The remainder of the paper is structured as follows. In 138

Section II, the related works related to the paper are presented. 139

In Section III, we detail the overall structure and implemen- 140

tation details of the proposed method. Section IV presents 141

the comprehensive experimental analyses and the ablation 142

experiments for each module. The conclusion is presented in 143

Section V. 144

II. RELATED WORK 145

This section provides a comprehensive review of recent 146

gait recognition methods. Following the previous works [10], 147

[20], we categorize the methods into two groups, namely 148

spatial feature-based methods and spatio-temporal feature- 149

based methods. 150

A. Gait Recognition Using Spatial Features 151

To extract spatial gait features invariant to viewing changes, 152

Wu et al. [21] randomly selected raw silhouettes from the gait 153

sequence and accumulated the features extracted by the CNN 154

to compute the set-level representations. The method ignores 155

the motion information from adjacent frames and focuses on 156

capturing the co-occurrences and frequencies of discriminative 157

features. Wu et al. [22] accumulated the entire gait sequence 158

into Gait Energy Images (GEIs) and employed CNN to extract 159

features from pairs of GEIs to predict similarity for cross-view 160

gait recognition. 161

To address the challenges caused by view changes, Xing et 162

al. [20] developed the complete canonical correlation analysis 163

model to extract the common spatial features across differ- 164

ent viewing angles, which preserves not only the completed 165

correlation information but also the effective discriminant 166

information among the original sets of features. Huang et al. 167

[1] introduced a parallel-insight convolution layer, which was 168

integrated with a spatial-temporal dual-attention unit to capture 169

global spatial-temporal information. Moreover, Takemura et 170

al. [23] constructed both the Siamese network for the verifica- 171

tion task and the triplet network for the identification task. For 172

the large view differences, they have observed that the CNN 173

architectures exhibit insensitivity towards spatial displacement, 174

as the disparity between a matching pair is computed only 175

at the final layer after traversing through convolution and 176

max pooling layers. By contrast, when dealing with subject 177

differences under small view variations, they used CNN ar- 178

chitectures to calculate the difference between matching pairs 179

at the input level to enhance their sensitivity towards spatial 180

displacement. 181

Inspired by the ideas above, the GLN [24] network further 182

leveraged the inherent feature pyramid fusion of deep CNNs 183

to enhance gait representation. Specifically, the silhouette- 184

level and set-level features obtained from various stages are 185

integrated with the lateral connections top-down. To avoid 186

the gait period detection, Gaitset [19] treated the silhouettes 187
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in a gait sequence as a disordered set, which is permutation188

invariant and employed set pooling to fuse the features from189

the silhouette set. The horizontal pyramid mapping is also190

employed to learn part representations, which is helpful for191

gait recognition. Although the representations of both the GEIs192

and the set pooling consider the information of the whole193

gait sequence, these approaches primarily emphasize spatial194

information while neglecting crucial temporal contextual de-195

tails that contain valuable identification information necessary196

for analyzing time series data.197

B. Gait Recognition Using Spatio-temporal Features198

In addition to spatial information, it is important to empha-199

size on representational temporal information. In early studies,200

LSTM [13] and 3D convolutional [15] networks are commonly201

employed to extract temporal features. GaitNet [25] employed202

the LSTM networks to integrate the pose features disentangled203

from the appearance features by an autoEncoder framework to204

capture the temporal dynamics of the whole gait sequence.205

Wolf et al. [15] introduced the 3D convolutions to capture the206

spatio-temporal features for gait recognition in multiple views.207

However, the method overlooks the fine-grained features of208

local regions. To address this issue, GaitPart [12] utilized a209

micro-motion capture module to extract fine-grained temporal210

information within a localized region. Wang et al. [26] pro-211

posed an end-to-end 3D gait recognition framework named212

PointGait, which can directly capture informative gait features213

from point cloud data. Moreover, Huang et al. [16] introduced214

the 3D local operations to extract 3D features of different215

body parts from the gait sequence with adaptive spatial and216

temporal parameters, such as scales, locations, and lengths.217

In addition, Lin et al. [17] partitioned the entire gait sequence218

into sub-sequences and utilized 3D convolution to extract local219

spatio-temporal features from each sub-sequence. Furthermore,220

Huang et al. [18] extracted temporal features at multiple scales221

and employed soft attention to aggregate temporal signals to222

improve spatio-temporal modeling ability.223

Extracting gait features solely from a global perspective224

would overlook local detailed temporal information that is225

more indicative of identity. Conversely, focusing exclusively226

on local temporal features would disregard the contextual227

information of different regions and neglect some valuable228

discriminative information. The proposed method captures the229

uniqueness of gait more comprehensively by combining local230

multi-scale temporal features with global contextual spatio-231

temporal features to improve recognition accuracy.232

III. METHOD233

In this section, we first introduce the framework of the local234

multi-scale and global contextual spatio-temporal (LMGCS)235

network. Then, we elaborate on the fundamental components236

of the proposed method, including the local multi-resolution237

feature extractor (LMFE), the multi-branch feature fusion238

(MFF), and the global self-attention feature extractor (GSFE).239

Finally, we present the loss function of the entire network.240

A. Overall framework 241

The overall framework of the proposed model is illus- 242

trated in Fig. 2. It primarily consists of two processes: (1) 243

Spatio-temporal feature extraction process, (2) Local fine- 244

gained global contextual-temporal feature extraction process. 245

The input gait data (Ij ∈ Rh1∗w2 , j = 1, 2, . . . , n) consists of 246

n frames, where each frame represents a gait silhouette with 247

a height of h and a width of w. To begin with, the input I 248

is fed into the 3D convolutional backbone network E3D(·) to 249

extract spatio-temporal features, yielding F = E3D(I), F ∈ 250

Rn∗c∗h2∗w2 . Here, h2 and w2 represent the spatial dimensions 251

of feature F in horizontal and vertical directions. c represents 252

the number of channels. We apply the horizontal pyramid map- 253

ping to the feature F , which is subsequently partitioned into m 254

local regions in the spatial dimensions. More specifically, the 255

global average pooling GAP(·) and global maximum pooling 256

GMP(·) [27] are jointly used to reduce the feature from h2∗w2 257

to m dimensions. The formula is as follows, 258

M = GAP(F )⊕ GMP(F ), (1)

where M represents the intermediate feature. 259

We divide the feature M ∈ Rn∗c∗m into multiple subse- 260

quences in the temporal dimension and extract the fine-grained 261

features by the LMFE module. The LMFE designs multiple 262

branches to mine the fine-grained features from various tem- 263

poral resolutions. These fine-grained features are subsequently 264

fed into the MFF module, which improves the representative 265

capacity of each branch through information interaction across 266

various resolutions. The GSFE module further captures the 267

global context information from different branches to adap- 268

tively complement the local fine-grained features. Details of 269

the LMFE, MFF, and GSFE will be introduced in Sections 270

III-B, III-C, and III-D. The notations are summarized in 271

Table I. 272

TABLE I. MATHEMATICAL NOTATIONS.

Notation Description
I Input image
GAP(·) Global average pooling
GMP(·) Global maximum pooling
◦ 2D convolution operation
Re(·) ReLU activation
S(·) Softmax function
⊕ Concatenation operator
⊙ Multiplication operator

B. Local Multi-resolution Feature Extractor 273

The structure of the LFME module is illustrated in Fig. 3. 274

The LMFE module prioritizes diverse local motion patterns, 275

which extract the refined temporal features. To extract fine- 276

grained temporal features locally, we partition the entire gait 277

feature sequence into n overlapping subsequences based on 278

scale parameters, where each subsequence is denoted as M i
s ∈ 279

Rs∗c∗m, with i ∈ 1, 2, . . . , n. Here, s denotes the number 280

of frames in each subsequence, ∗ indicates the concatenation 281

of tensor dimensions, and i represents the index of the i-th 282

subsequence. Then, the temporal fine-grained features can be 283

extracted from the local subsequence as T i
s = Conv1D(M), 284
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Fig. 2. The overall flowchart of the joint local multi-scale and global contextual spatio-temporal (LMGCS) network. It encompasses the local multi-resolution
feature extractor (LMFE), the multi-branch feature fusion (MFF), and the global self-attention feature extractor (GSFE).

where T i
s ∈ R1∗c∗m and Conv1D(·) describe the feature285

extraction module. In addition, the module comprises two 1D286

convolutions with kernel sizes {1, 3, 5} and is augmented by287

the residual block. It is computed as follows,288

T i
s = Re

(
M i

s ◦ k1 + b1
)
+ Re

(
Re
(
M i

s ◦ k1 + b1
)
◦ k2 + b2

)
(2)

where ◦ represents the 2D convolution operation. k1 and k2289

represent the parameters of convolution from the first and290

second layers. b1 and b2 represent the bias parameters of the291

first and second layers. Re(·) represents the ReLU activation292

function. We have devised three branches that segment sub-293

sequences at varying resolutions to improve the extraction of294

more comprehensive local temporal features.295

C. Multi-Branch Feature Fusion296

After extracting local temporal features at various resolu-297

tions, the mined multi-branch features are forwarded to the298

MFF module, which facilitates diverse fusion across multiple299

branches. The MFF module enables each branch to integrate300

fine-grained features with multi-resolution features from other301

branches during the merging process while emphasizing its302

fine-grained information at its respective resolution. This fur-303

ther enriches the feature expression ability of each branch. The304

following fusion strategy is introduced to integrate features305

from each corresponding sub-region across three branches. The306

formula is as follows,307

Ci
s′ = H

(
T i
s=1, T

i
s=3, T

i
s=5

)
, i ∈ {1, 2, ..., n}, (3)

.


.


.

.


.


.

Conv1D Conv1D

Fine-grained feature extraction
s  Frame

Slide
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.


.


.

Fine-grained feature extraction

Fig. 3. The detailed structure of local multi-resolution feature extrac-
tor (LMFE). It extracts detailed temporal information from each sub-sequence
using two 1D convolutions and a residual block to mine the fine-grained
temporal features from multi-resolution.

where i represents the i-th subregion and T i
s ∈ R1∗c∗m, 308

Ci
s′ ∈ R1∗c∗m. H(·) represents the multi-branch feature fusion 309

function. The MFF module has two variant structures. 1) Static 310

structure: In the static approach, a straightforward scheme 311

utilizes the summation of branch features as the new branch 312

features. Specifically, we aggregate the fine-grained features 313

into the coarse-grained features, ensuring that the combined 314

output of each branch equals the sum of all original features 315

from branches with a resolution less than or equal to its gran- 316

ularity. As shown in Eq. 4, the first formula denotes that the 317

fused feature from the fine-grained branch remains unchanged 318

and is equivalent to the original fine-grained feature, the 319

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2024.3476384

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Harbin Engineering Univ Library. Downloaded on October 10,2024 at 09:06:22 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024 5

second formula employs that the fused medium-grained branch320

feature is obtained by summing both the original fine-grained321

and medium-grained branch features, and the third formula322

represents that the fused coarse-grained branch feature results323

from combining the original fine-grained, medium-grained,324

and coarse-grained branch features. This approach is efficient325

as it does not increase the number of network parameters326

while simultaneously reducing computational overhead. It is327

computed as follows,328

Ci
s=1 = T i

s=1

Ci
s=3 = T i

s=1 ⊕ T i
s=3

Ci
s=5 = T i

s=1 ⊕ T i
s=3 ⊕ T i

s=5

(4)

where ⊕ denotes the concatenation operator.329

2) Attention-based structure: The attention mechanism inte-330

grates features from diverse branches, as depicted in Fig. 4.331

The features from all the branches are concatenated T i =332 [
T i
s=1, T

i
s=3, T

i
s=5

]
∈ R3∗c∗m and input into the 1D convo-333

lution for fusion. The attention weights for each branch are334

computed by utilizing the correlation between the features335

of individual branches and the fused features. Finally, the336

feature of each branch is multiplied by its corresponding337

attention weight and then combined with the input feature338

by the residual connection to obtain the updated feature339

Ci =
(
Ci

s=1, C
i
s=3, C

i
s=5

)
∈ R3∗c∗m. It is formulated as340

follows,341

Ci = S
(
T i ◦ k + b, T i

)
⊙ T i + T i (5)

where k represents the kernel of the 1D convolution. b denotes342

the bias. S(·) represents the softmax function. ⊙ employs the343

multiplication of the attention weights.344

During the inference stage, the LMFE module divides the in-345

put gait sequence into sub-sequences with different resolutions346

and extracts fine-grained temporal features from each branch.347

The MFF module then fuses these features across branches,348

which enriches the feature representation and improves the349

model’s perception of temporal patterns at various granular-350

ities. The final global features obtained from the MFF module351

are fed into the GSFE module to capture global contextual352

information across the entire gait sequence.353

Conv1D
Kernel=3

Sigmoid

Attention weight

Fig. 4. The variant structure of multi-branch feature fusion (MFF). It
combines features from different branches using an attention mechanism to
focus on the most relevant information, which enriches the feature diversity
and the representability of different branches.

D. Global Self-attention Feature Extractor354

The previous studies predominantly employed static fusion355

methods, such as max(·), mean(·), median(·), or their com-356

bination, for global temporal feature fusion. These methods357

assume equal importance of all local temporal regions in the 358

sequence and fail to adaptively fuse features by considering 359

the contextual relationships among different sub-regions. To 360

tackle this challenge, we employ a transformer architecture, 361

which enables the model to effectively assess the relevance 362

of different subregions within the gait sequence and dynam- 363

ically modulate their contribution to the feature extraction 364

process. As individuals exhibit unique walking patterns, the 365

temporal characteristics embedded in their global context are 366

also distinct. To capture this uniqueness, we employ a self- 367

attention mechanism to learn the interaction between sub- 368

sequences. Besides, we utilize cross-attention to automatically 369

capture correlations between features from sub-sequences and 370

global temporal features of the entire gait sequence. The GSFE 371

module employs an adaptive fusion mechanism to capture the 372

key regions and important features across the entire time series, 373

which acquire the more expressive feature representation to 374

enhance the performance and accuracy of gait recognition. 375

Specifically, the spatial feature of each horizontal sub-region 376

C1
s , ..., C

n
s obtained in the previous section is inputted into the 377

transformer network to extract global temporal fusion features. 378

The structure of the GSFE module is illustrated in Fig. 5. 379
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Input Output

Fig. 5. The detailed structure of global self-attention feature extractor (GSFE).
It adopts a transformer structure to extract global contextual information,
which learns the contextual information between sub-sequences and employs
the learned contextual relationship to adaptively fuse the feature from sub-
sequences.

The formula is as follows, 380

Os,p = Transformer
(
C1

s,p, ..., C
n
s,p

)
= Dec

(
Enc

(
C1

s,p, ..., C
n
s,p

)
, Cmax

s,p

))
,

(6)

where the encoder Enc(·) takes inputs feature 381{
Ci

s,p ∈ R1∗c, i = 1, 2, ..., n
}

, and p ∈ (1, ...,m) represents 382

the p-th subregion of the horizontal space. The decoder 383

Dec(·) input Cmax
s,p ∈ R1∗c gets Cmax

s,p = max
(
C1

s,p, ..., C
n
s,p

)
384

by max-pooling the input C1
s,p, ..., C

n
s,p in the time dimension 385

and outputs Os,p ∈ R1∗c. The input features C1
s,p, ..., C

n
s,p are 386

sent to the encoder to obtain encoded features. Specifically, 387

C1
s,p, ..., C

n
s,p will undergo linear transformation to obtain 388

Q,K, V of the transformer, which is represented as follows, 389

Qi
s,p = Ci

s,p ×WQ;Ki
s,p = Ci

s,p ×WK ;V i
s,p = Ci

s,p ×WV ,
(7)

where WQ,WK , and WV represent the transformation ma- 390

trices of Q, K, and V , respectively. The self-attention feature 391
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us,p is obtained by feeding the self-attention function through392

Qs,p,Ks,p, Vs,p. The formula is as follows,393

us,p = S (Qs,p,Ks,p, Vs,p) = Softmax

(
Qs,p (Ks,p)

T

√
dk

)
Vs,p.

(8)
To enhance the encoding process, we employ a multi-394

head attention mechanism to capture richer encoding features,395

similar to the approach in [28]. Then, the self-attention feature396

us,p is fed into the feedforward network FFN(·) to obtain the397

encoded feature Us,p. The formula of the feedforward network398

is as follows,399

Us,p = FFN (us,p) = max (0, us,p ×W1 + b1)×W2+b2, (9)

where W1,W2, b1, b2 are the weights and biases of the first400

and second layers of the feedforward network, respectively.401

Subsequently, the “Add” operation is employed to implement402

residual connections and layer normalization within the FFN403

network. The final encoded feature Uenc
s,p ∈ Rn∗c as Ks,p,404

Vs,p is input into the decoder. Similarly, Cmax
s,p is used as405

Qs,p and input into the decoder. In the decoder, both Uenc
s,p406

and Cmax
s,p are processed through the self-attention mechanism407

and feedforward networks, which result in the final decoded408

features Os,p = Dec(Uenc
s,p , Cmax

s,p ). The decoded features Os,p409

of the p-th horizontal spatial region together form the global410

self-attention temporal context feature Os ∈ Rm∗c of the s-th411

branch.412

E. Loss Function413

To efficiently train the proposed gait recognition model,414

we utilize the triplet loss function [29], which improves415

the inter-class distance and reduces the intra-class distance.416

During training, we perform max-pooling on C1
s , ..., C

n
s in417

the temporal dimension to obtain Cmax
s = max

(
C1

s , ..., C
n
s

)
418

as the input for the first triplet loss, resulting in Ltri1. This419

component focuses on the local features extracted by LMFE420

and MFF. It is denoted as follows,421

Ltri1 = [D
(
G (Cmax,a1

s ) , G
(
Cmax,b

s

))
−

D
(
G
(
Cmax,a1

s

)
, G (Cmax,a2

s )
)
+m]+,

(10)

where a1 and a2 represent samples of the same individual,422

while b denotes samples from a different individual. Cmax,a1
s ∈423

R1∗c represents the feature vector of sample a1 at time s, with424

dimension 1 ∗ c. Cmax,b
s ∈ R1∗c represents the feature vector425

of sample b at time s, with dimension 1∗c. G(·) represents the426

fully connected layer used for feature mapping. The operation427

[γ]+ is equivalent to max(γ, 0). D(d1, d2) represents the428

Euclidean distance between d1 and d2. m is the margin value429

controlling the minimum required distance between positive430

and negative pairs.431

The component Ltri2 focuses on the global features ex-432

tracted by GSFE. It calculates the distance between a positive433

pair and a negative pair across different sub-sequences. The434

process takes the output features Os of the decoder as input.435

It is formulated as:436

Ltri2 = [D
(
G
(
Oa1

s

)
, G
(
Ob

s

))
−

D
(
G
(
Oa1

s

)
, G
(
Oa2

s

))
+m]+,

(11)

where Os is the second triplet loss input gives Ltri2. Feature 437

mapping is performed on Os to change the feature dimension. 438

The total triple loss function Lcom can be defined as, 439

Lcom = Ltri1 + Ltri2, (12)

where the overall loss function Lcom is the sum of Ltri1 440

and Ltri2, which promote both local and global discriminative 441

feature learning. 442

Furthermore, to refine the classification space, the cross- 443

entropy loss Lce is employed and expressed as follows, 444

Lce = −
N∑
i=1

yi log(pi), (13)

where N is the number of classes, yi is a binary indicator 445

(0 or 1) if class label i is the correct classification for 446

the observation, and pi is the predicted probability of the 447

observation being of class i. 448

To achieve the best performance, triplet loss and cross- 449

entropy loss are used to train our network. It is formulated 450

as follows, 451

Lall = Lcom + Lce, (14)

where Lcom and Lce represent triplet loss and cross-entropy 452

loss respectively. The triplet loss operates from a geometric 453

standpoint, which learns more discriminative feature repre- 454

sentations by minimizing the distance between samples of 455

the same class and maximizing the distance between sam- 456

ples of different classes. Besides, the cross-entropy loss is 457

derived from the perspective of maximum likelihood, aiming 458

to optimize the predicted class probability distribution so that 459

it closely matches the true label distribution. By combining 460

these two losses, the model can more effectively extract highly 461

discriminative features, thereby improving its recognition ac- 462

curacy. 463

IV. EXPERIMENT 464

This section includes four parts. In the first part, we mainly 465

introduce the two public datasets used in the experiments, 466

called CASIA-B [30] and OU-MVLP [31] datasets. The sec- 467

ond part describes the hyperparameter settings of the model. 468

In the third part, we compare the LMGCS with other existing 469

methods on CASIA-B [30] and OU-MVLP [31] datasets. In 470

the fourth part, we conduct the generalization experiments on 471

the Gait3D [32] dataset. In the fifth part, we conduct ablation 472

experiments on the various modules of the LMGCS on the 473

CASIA-B [30] dataset. 474

A. Dataset 475

CASIA-B [30] is the most commonly used gait dataset, 476

which includes 124 subjects. Each subject has 10 different 477

sets of data under three conditions: 6 sets of normal walking 478

(NM), 2 sets of walking while carrying a bag (BG), and 2 479

sets of walking while wearing a coat (CL). Each set contains 480

11 different angles, ranging from 0° to 180° in increments 481

of 18°. A qualitative illustration is given in Fig. 6. CASIA- 482

B [30] has three general settings: small sample training (ST: 483
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Fig. 6. Examples of cropped gait contours of a subject in the CASIA-B dataset at 0 ° to 180 ° under three different walking states (0 °, 18 °, 36 °, ... , 180 °,
11 evenly spaced angles).

Fig. 7. Example of cropped gait contours for a subject in the OU-MVLP dataset under two walks with 14 different perspectives 0 °, 15 °, ... , 90 ° and 180 °,
195 °, ... , 270 °.

TABLE II. SELECT PARAMETER VALUES FOR THE PROPOSED
NETWORK.

Subnetwork Parameter Setting
Subnetwork A Loss Function Triple Loss + CE Loss

Optimizer Adam
Learning Rate(CASIA-B [30]) Iter<70k:0.0001;Iter>70k:0.00001

Learning Rate(OU-MVLP [31]) Iter<80k:0.0001;Iter>80k:0.00001
Margin Value 0.2

Batch Size(CASIA-B [30]) 64
Batch Size(OU-MVLP [31]) 256

Iter(CASIA-B [30]) 80000
Iter(OU-MVLP [31]) 100000

Subnetwork B Loss Function Triple Loss + CE Loss
Optimizer Adam

Learning Rate 0.0001
Margin Value 0.2

Batch Size(CASIA-B [30]) 64
Batch Size(OU-MVLP [31]) 256

Iter(CASIA-B [30]) 30000
Iter(OU-MVLP [31]) 40000

24 subjects for training and 100 for testing), medium sample484

training (MT: 62 subjects for training and testing, respectively),485

and large sample training (LT: 74 subjects for training and 50486

for testing). The test data is divided into a gallery set and a487

probe set in each setting. The gallery set includes four NM488

groups, and the probe set includes the remaining groups.489

OU-MVLP [31] is a challenging gait dataset which includes490

10,307 subjects. Each subject has 14 views (0°, 15°, ... , 90°,491

180°, 195°, ... , 270°), and each view contains two sequences492

(00 and 01). A qualitative illustration of the OU-MVLP sample493

is given in Fig. 7. The experimental protocol follows the same494

procedure as outlined in [11]. All sequences are divided into495

training and testing sets according to the subjects (5,153 for496

training and 5,154 for testing). In the testing set, seq01 is the497

gallery set, and seq00 is the probe set.498

B. Implementation Details 499

1) Training Details: A qualitative illustration is given in 500

Table II. In all the experiments, we use the same processing 501

approach as [18] to align each frame and resize to the size 502

of 64 × 44. We apply Adam as the optimizer [39] with a 503

learning rate of 1e-4 and a momentum of 0.9. In addition, 504

the Leaky ReLU [40] activation function is applied after each 505

convolutional layer. The models are trained on 4 NVIDIA 506

2080TI GPUs. In a mini-batch, the number of sampled subjects 507

is denoted by p, and the number of sampled sequences per 508

subject is denoted by k. Particularly, (p, k) is set to (8, 8) on 509

CASIA-B [30] and (32, 8) on OU-MVLP [31]. For each input 510

sequence, we sample 30 frames as training data. In CASIA- 511

B [30], we train the subnetwork A for 80K iterations and 512

reduce the learning rate to 1e-5 at 70K iterations first and 513

then train subnetwork B for 30K iterations. 514

2) Hyper-parameters: (1) The number of channels for four 515

conv layers are set to 32/64, 64/128, 128/256, and 128/256 on 516

CASIA-B [30] and OU-MVLP [31] datasets, respectively. The 517

kernel size is set to 3. (2) For the LMFE, the branch is set to 3, 518

and the value of F is set to 1,3,5 on each branch, respectively. 519

(3) For GSFE, we set the transformer block number of (n, m) 520

to (4,4). 521

C. Comparison with State-of-the-Art Methods 522

1) CASIA-B: In Tables III, IV, and V, compared with some 523

experimental methods, the LMGCS model is superior to other 524

competitors. Generally, the models that utilized both spatial 525

and temporal information (e.g., GaitPart [12], GLFE [14], 526

MT3D [17]) outperform the models that rely solely on spa- 527

tial features (e.g., GaitSet [19]). The modes extracting fine 528

grained temporal features, such as GaitPart [12], GLFE [14], 529

MT3D [17], and the LMGCS, perform better than the Gait- 530

Set [19]. Because gait recognition is a fine-grained task, local 531
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TABLE III. AVERAGED RANK-1 ACCURACY ON CASIA-B WITH THE SETTING OF ST EXCLUDING IDENTICAL-VIEW CASES. (THE BEST RESULTS ARE
MARKED IN BOLD).

Gallery NM 0o − 180o MeanProbe 0o 18o 36o 54o 72o 90o 108o 126o 144o 162o 180o

ST

NM
ViDP [33] - - - 59.1 - 50.2 - 57.5 - - - -

CMCC [34] 46.3 - - 52.4 - 48.3 - 56.9 - - - -
CNN-LB [22] 54.8 - - 77.8 - 64.9 - 76.1 - - - -
PoseGait [35] 55.3 69.6 73.9 75.0 68.0 68.2 71.1 72.9 76.1 70.4 55.4 68.7
GaitSet [19] 64.6 83.3 90.4 86.5 80.2 75.5 80.3 86.0 87.1 81.4 59.6 79.5
GLFE [14] 77.0 87.8 93.9 92.7 83.9 78.7 84.7 91.5 92.5 89.3 74.4 86.0

LMGCS (Ours) 77.5 88.2 94.0 92.7 83.9 79.2 85.1 91.8 92.8 90.2 75.2 86.4

BG
PoseGait [35] 35.3 47.2 52.4 46.9 45.5 43.9 46.1 48.1 49.4 43.6 31.1 44.5
GaitSet [19] 55.8 70.5 76.9 75.5 69.7 63.4 68.0 75.8 76.2 70.7 52.2 68.6
GLFE [14] 68.1 81.2 87.7 84.9 76.3 70.5 76.1 84.5 87.0 83.6 65.0 78.6

LMGCS (Ours) 68.3 81.6 88.2 85.2 76.6 70.7 76.8 85.1 87.6 83.9 66.2 79.1

CL
PoseGait [35] 24.3 29.7 41.3 38.8 38.2 38.5 41.6 44.9 42.2 33.4 22.5 36.0
GaitSet [19] 29.4 43.1 49.5 48.7 42.3 40.3 44.9 47.4 43.0 35.7 25.6 40.9
GLFE [14] 46.9 58.7 66.6 65.4 58.3 54.1 59.5 62.7 61.3 57.1 40.6 57.4

LMGCS (Ours) 47.2 59.3 67.3 65.9 58.6 54.3 59.8 62.8 61.3 57.9 40.8 57.7

TABLE IV. AVERAGED RANK-1 ACCURACY ON CASIA-B WITH THE SETTING OF MT EXCLUDING IDENTICAL-VIEW CASES. (THE BEST RESULTS ARE
MARKED IN BOLD).

Gallery NM 0o − 180o MeanProbe 0o 18o 36o 54o 72o 90o 108o 126o 144o 162o 180o

MT

NM

AE [36] 49.3 61.5 64.4 63.6 63.7 58.1 59.9 66.5 64.8 56.9 44.0 59.3
MGAN [37] 54.9 65.9 72.1 74.8 71.1 65.7 70.0 75.6 76.2 68.6 53.8 68.1
GaitSet [19] 86.8 95.2 98.0 94.5 91.5 89.1 91.1 95.0 97.4 93.7 80.2 92.0
GLFE [14] 93.9 97.6 98.8 97.3 95.2 92.7 95.6 98.1 98.5 96.5 91.2 95.9

LMGCS (Ours) 94.2 97.9 99.2 98.0 95.8 93.2 96.0 98.3 99.0 97.0 91.6 96.4

BG

AE [36] 29.8 37.7 39.2 40.5 43.8 37.5 43.0 42.7 36.3 30.6 28.5 37.2
MGAN [37] 48.5 58.5 59.7 58.0 53.7 49.8 54.0 51.3 59.5 55.9 43.1 54.7
GaitSet [19] 79.9 89.8 91.2 86.7 81.6 76.7 81.0 88.2 90.3 88.5 73.0 84.3
GLFE [14] 88.5 95.1 95.9 94.2 91.5 85.4 89.0 95.4 97.4 94.3 86.3 92.1

LMGCS (Ours) 88.6 95.4 96.2 94.4 92.2 85.7 89.6 95.7 97.6 94.8 86.7 92.4

CL

AE [36] 18.7 21.0 25.0 25.1 25.0 26.3 28.7 30.0 23.6 23.4 19.0 24.2
MGAN [37] 23.1 34.5 36.3 33.3 32.9 32.7 34.2 37.6 33.7 26.7 21.0 31.5
GaitSet [19] 52.0 66.0 72.8 69.3 63.1 61.2 63.5 66.5 67.5 60.0 45.9 62.5
GLFE [14] 70.7 83.2 87.1 84.7 78.2 71.3 78.0 83.7 83.6 77.1 63.1 78.3

LMGCS (Ours) 71.2 83.6 87.9 85.2 78.6 71.6 78.5 84.1 83.7 77.5 63.4 78.7

fine-grained regions contain more distinctive identity informa-532

tion. Moreover, using different granularity to extract temporal533

features simultaneously, such as GLFE [14], MT3D [17], and534

the LMGCS, is better than GaitPart [12], which uses the same535

granularity to extract temporal features.536

As shown in Tables III, IV, and V, the proposed LMGCS537

achieves best results under different conditions. For example,538

as shown in Table III, the proposed method achieves superior539

performance compared to GLFE [14] across several angles in540

the ST setting. At the 0° angle, the performance of LMGCS541

improves by 0.5%, and at the 180° angle, the improvement is542

0.8%. Additionally, as shown in Table IV, the proposed method543

consistently improves over GLFE [14] across most angles544

in the MT setting. It demonstrates the effectiveness of the545

LMGCS in capturing complex gait features. Besides, compared546

with the GLFE [14] which utilizes both spatial and temporal547

information, the proposed LMGCS demonstrated decreases of548

0.62%, 0.95%, and 1.67% in NM, BG and CL, as shown549

in Table V. Furthermore, the LMGCS performs better than550

GLFE [14], MT3D [17], and GaitPart [12] since the proposed551

method employs the transformer modules to mine global552

contextual spatio-temporal features, which is important to the 553

varying temporal context information of different individuals 554

during walking. 555

2) OU-MVLP: To evaluate the performance of LMGCS, we 556

complete the experiments on the OU-MVLP gait dataset [31], 557

as shown in Table VI. We use the test protocol, which is the 558

same as [12]. The result of the “Mean” scores was the best. 559

Compared to previous methods, the proposed LMGCS method 560

improves the recognition accuracy by approximately 1.7% over 561

GaitSet [19] and 2.5% over GaitPart [12], based on the mean 562

Rank-1 accuracy. The superior performance of the LMGCS 563

approach is attributed to its ability to comprehensively capture 564

the uniqueness of gait by combining local multi-scale temporal 565

features with global contextual spatio-temporal features. As 566

shown in Table VI, the LMGCS performs comparably to 567

3dLocal [16] at most angles, with differences ranging between 568

0.1% and 0.9%. This indicates that both methods can achieve 569

comparable performance in many view angles. However, at 570

the extreme angles of 0° and 180°, LMGCS outperforms 571

3dLocal [16] significantly. Specifically, at 0°, the proposed 572

method achieves an accuracy of 88.4%, whereas 3dLocal [16] 573
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TABLE V. AVERAGED RANK-1 ACCURACY ON CASIA-B WITH THE SETTING OF LT EXCLUDING IDENTICAL-VIEW CASES. (THE BEST RESULTS ARE
MARKED IN BOLD).

Gallery NM 0o − 180o MeanProbe 0o 18o 36o 54o 72o 90o 108o 126o 144o 162o 180o

LT

NM

CNN-3D [22] 87.1 93.2 97.0 94.6 90.2 88.3 91.1 93.8 96.5 96.0 85.7 92.1
CNN-Ensemble [22] 88.7 95.1 98.2 96.4 94.1 91.5 93.9 97.5 98.4 95.8 85.6 94.1

GaitSet [19] 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
ACL [11] 92.0 98.5 100.0 98.9 95.7 91.5 94.5 97.7 98.4 96.7 91.9 96.0

GEINet [38] 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
GaitPart [12] 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2
MT3D [17] 95.7 98.2 99.0 97.5 95.1 93.9 96.1 98.6 99.2 98.2 92.0 96.7
GLFE [14] 96.0 98.3 99.0 97.9 96.9 95.4 97.0 98.9 99.3 98.8 94.0 97.4

LMGCS (Ours) 97.0 99.5 99.3 98.8 97.4 96.2 97.4 98.9 99.5 99.5 94.3 98.0

BG

CNN-LB [22] 64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4
GaitSet [19] 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
GEINet [38] 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
GaitPart [12] 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.5
MT3D [17] 91.0 95.4 97.5 94.2 92.3 86.9 91.2 95.6 97.3 96.4 86.6 93.0
GLFE [14] 92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 91.5 94.5

LMGCS (Ours) 93.4 97.8 99.9 96.6 94.7 89.3 93.6 98.0 99.7 98.8 89.0 95.4

CL

MGAN [37] 23.1 34.5 36.3 33.3 32.9 32.7 34.2 37.6 33.7 26.7 21.0 31.5
CNN-LB [22] 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0
GaitSet [19] 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
GEINet [38] 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
GaitPart [12] 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7
MT3D [17] 76.0 87.6 89.8 85.0 81.2 75.7 81.0 84.5 85.4 82.2 68.1 81.5
GLFE [14] 76.6 90.0 90.3 87.1 84.5 79.0 84.1 87.0 87.3 84.4 69.5 83.6

LMGCS (Ours) 79.5 91.1 93.3 88.5 84.7 79.2 84.5 88.0 88.9 85.7 71.6 85.0

TABLE VI. AVERAGED RANK-1 ACCURACY ON OU-MVLP EXCLUDING IDENTICAL-VIEW CASES. (THE BEST RESULTS ARE MARKED IN BOLD).

NM Gallery All 14 Views
GaitSet [19] GaitPart [12] GLFE [14] CSTL [17] 3dLocal [16] LMGCS (Ours)

0o 79.5 82.6 83.8 87.1 86.1 88.4
15o 87.9 88.9 90.0 91.0 91.2 91.6
30o 89.9 90.8 91.0 91.5 92.6 91.5
45o 90.2 91.0 91.2 91.8 92.9 91.8
60o 88.1 89.7 90.3 90.6 92.2 91.4
75o 88.7 89.9 90.0 90.8 91.3 91.1
90o 87.8 89.5 89.4 90.6 91.1 90.7
180o 81.7 85.2 85.3 89.4 86.9 90.7
195o 86.7 88.1 89.1 90.2 90.8 90.8
210o 89.0 90.0 90.5 90.5 92.2 91.6
225o 89.3 90.1 90.6 90.7 92.3 91.5
240o 87.2 89.0 89.6 89.8 91.3 91.0
255o 87.8 89.1 89.3 90.0 91.1 90.5
270o 86.2 88.2 88.5 89.4 90.2 90.0
Mean 87.1 88.7 89.2 90.2 90.9 90.9

only reaches 86.1%, representing an improvement of about574

2.67%. At 180°, the LMGCS method scores 90.7%, while575

3dLocal [16] reaches 86.9%, leading to a 4.38% improvement.576

The small performance gap at other angles can be attributed577

to the fact that 3dLocal [16] effectively captures local spatio-578

temporal features, leading to comparable performance to the579

LMGCS at several angles.580

However, at extreme angles such as 0° and 180°, 3dLo-581

cal [16] struggles to fully extract critical features, as it primar-582

ily focuses on local spatio-temporal information and lacks a583

holistic understanding of the scene. In contrast, the proposed584

LMGCS extracts local multi-scale features across different585

temporal resolutions and learns contextual information be-586

tween different subsequences. It facilitates the effective fusion587

of features at various resolutions in the LMGCS model, which588

helps to capture richer global context information. Besides, the589

variance in accuracy for the proposed LMGCS is around 0.675, 590

while the variance for the 3dLocal [16] method is approxi- 591

mately 3.483. It indicates that the LMGCS has more consistent 592

performance across different viewing angles compared to the 593

3dLocal [16] method. In conclusion, the proposed method 594

performs better at extreme angles and shows more excellent 595

stability due to its lower variance. 596

D. Generalization Analysis 597

To validate the generalization performance of the proposed 598

LMGCS model, we conducted experiments on the Gait3D [32] 599

dataset. The Gait3D dataset encompasses over 25,000 gait 600

sequences from 4,000 participants, which feature diverse in- 601

formation such as different human perspectives and body 602

shapes in the wild. We utilized the 2D Silhouette data to 603

extract the gait feature. Table VII presents a performance 604
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comparison of the proposed LMGCS model with other state-605

of-the-art models based on the R@1, R@5, and mAP metrics.606

Compared to other competitors, LMGCS demonstrates an607

advantage across all evaluation metrics. In terms of R@1 and608

R@5, the LMGCS achieved the best scores of 17.9 and 35.8,609

respectively. Compared to the CSTL [18] which utilizes spatial610

and temporal information, the proposed LMGCS achieves a611

52.99% improvement in R@1 and an 86.46% improvement in612

R@5. Furthermore, compared to GaitGraph [41], the proposed613

method improved the mAP metric by 62.4%. It verifies the614

generalization ability of the proposed method in complex gait615

recognition scenarios.616

TABLE VII. COMPARISON OF THE STATE-OF-THE-ART GAIT
RECOGNITION METHODS ON GAIT3D DATASET.

Methods R@1 R@5 mAP
GEINet [38] 5.4 14.2 5.1
PoseGait [35] 0.2 1.1 0.5
GaitGraph [41] 6.3 16.2 5.2
CSTL [18] 11.7 19.2 5.6
LMGCS (Ours) 17.9 35.8 13.8

E. Ablation Studies617

In Table VIII, the ablation studies provide individual contri-618

butions of each key component within the LMGCS network,619

including the local multi-resolution feature extractor (LMFE),620

multi-branch feature fusion (MFF), and global self-attention621

feature extractor (GSFE).622

Baseline Configuration (First Row): When all components623

(LMFE, MFF, and GSFE) are removed, the network achieves624

Rank-1 accuracy scores of 96.0% (NM), 92.6% (BG), and625

81.2% (CL). These results represent the basic configuration of626

the model without any advanced feature extraction or fusion627

methods.628

Effect of LMFE (Second Row): When LMFE is equipped629

solely, it achieves accuracy improvements of 1.3% in NM,630

1.4% in BG, and 1.5% in CL, which is attributable to the631

effective extraction of local temporal features. It demonstrates632

the significance of capturing fine-grained local temporal fea-633

tures in improving the performance.634

Effect of MFF and LMFE Combination (Third Row): When635

MFF is combined with LMFE, the accuracy improves to 84.6%636

in the CL scenario. This result highlights the importance of637

integrating multiple temporal features at different granularities638

to strengthen the model’s temporal feature perception.639

Effect of GSFE (Fourth Row): When GSFE is combined640

with LMFE, the Rank-1 accuracy improves the value to 97.8%641

and 95.3% in the NM, BG scenarios, respectively. It employs642

the idea that capturing global temporal context is crucial for643

improving the overall accuracy of the model.644

Full Model Configuration (Fifth Row): With the integration645

of LMFE, MFF, and GSFE, the network achieves the best646

accuracy in all contexts, with Rank-1 accuracy reaching 98.0%647

in the NM scenario, 95.4% in the BG scenario, and 85.0% in648

the CL scenario. It demonstrates the importance of combining649

local and global temporal features with multi-branch fusion to650

boost performance.651

In summary, the ablation study proves that each component 652

of the LMGCS network contributes to improved accuracy, with 653

the full model configuration achieving the best performance. 654

These results validate the inclusion of these components, as 655

they collectively enhance the model’s ability to effectively 656

capture and integrate both local and global temporal features. 657

TABLE VIII. ABLATION ANALYSIS OF THE KEY COMPONENTS (THE
BEST RESULTS ARE MARKED IN BOLD).

Methods Rank-1 Accuracy
LMFE MFF GSFE NM BG CL

✗ ✗ ✗ 96.0 92.6 81.2
✓ ✗ ✗ 97.1 94.0 82.7
✓ ✓ ✗ 97.2 94.9 84.6
✓ ✗ ✓ 97.8 95.3 84.6
✓ ✓ ✓ 98.0 95.4 85.0

In addition, we conducted ablation experiments on individ- 658

ual key modules. 659

1) Contribution of local multi-resolution feature extractor: 660

Compared with previous models that use a single scale to 661

extract features in the time dimension, we utilized a multi- 662

scale structure to extract fine-grained local temporal features. 663

We conduct different scales in the experiments to explore 664

the effect of multi-scale on the model. Table IX presents the 665

experimental results with LT settings on the CASIA-B [30] 666

dataset. The results show that accuracy steadily improves as 667

the number of branches increases. It indicates that accuracy 668

improvements plateau when the number of branches is set to 669

3. As shown in the last line, while the experiment indicates 670

that the efficiency of the model is not optimal, the accuracy 671

improves significantly with only a slight performance lag 672

compared to optimal efficiency. 673

2) Contribution of global self-attention feature extractor: 674

To verify the effectiveness of the GSFE module, we conduct 675

the ablation study as shown in Table X. The experimental 676

results demonstrate that combining GSFE with the baseline 677

method leads to improved accuracy compared to the baseline. 678

It indicates that GSFE is effective as an adaptive collection 679

pooling method. In particular, the average accuracy is further 680

improved when GSFE is combined with GaitSet [19] and 681

MT3D [17]. This indicates that GSFE is universal and can 682

be combined with various base networks to improve accuracy. 683

Additionally, experimental results revealed that the model 684

achieves optimal performance when the number of encoder 685

and decoder layers in GSFE is set to 4. 686

3) Contribution of multi-branch feature fusion: To explore 687

the fusion pattern for the MFF module, the experimental results 688

are presented in Table XI. The MFF module has two variants, 689

which consist of static structure and attention structure. In 690

the static structure, the fused feature of each branch is the 691

cumulative sum of all preceding branches. The features can 692

be fused in two directions (Ts=1→Ts=5 and Ts=5→Ts=1). 693

Ts=1→Ts=5 indicates the accumulation from fine-grained to 694

coarse-grained features. The transition from Ts=1 to Ts=5 695

indicates the aggregation of features from fine-grained to 696

coarse-grained scales. In the same way, the shift from Ts=5 to 697

Ts=1 reflects the accumulation of features from coarse-grained 698

to fine-grained scales. In the attention-based structure, the 699
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TABLE IX. THE IMPORTANCE OF THE DIFFERENT BRANCHES AND THE EXPERIMENT RESULTS WITH THE LT SETTINGS ON THE CASIA-B DATASET.

Multiscale-feature Rank-1 Accuracy RTX 3090 Efficiency
Fine-Grained Medium-Grained Coarse-Grained NM BG CL Mean Params (M) FLOPs (G) Time (ms)

✓ 96.0 92.6 81.2 89.9 14.72 2.58 1.41
✓ 95.4 92.2 80.9 89.5 14.72 2.59 5.24

✓ 95.2 92.0 80.6 89.4 14.72 2.59 5.25
✓ ✓ 97.9 95.2 84.7 92.6 15.77 2.59 5.24

✓ ✓ 97.3 94.0 82.8 91.4 15.77 2.59 9.02
✓ ✓ 97.6 95.0 84.4 92.3 15.77 2.60 9.00
✓ ✓ ✓ 98.0 95.4 85.0 92.8 16.82 2.60 9.13

TABLE X. THE EXPERIMENTAL DATA RESULTS OF THE
CONTRIBUTION OF GLOBAL SELF-ATTENTION FEATURE EXTRACTOR (THE

BEST RESULTS ARE MARKED IN BOLD).

Methods NM BG CL
Baseline 96.0 92.6 81.2

Baseline + GSFE(4 × 4) 97.7 94.7 83.4
Baseline + LMFE + GSFE(1 × 1) 97.8 95.0 84.4
Baseline + LMFE + GSFE(4 × 4) 97.8 95.3 84.6

Gaitset [19] 95.0 87.2 70.4
Gaitset [19] + GSFE(4 × 4) 97.0 89.2 74.5

MT3D [17] 96.5 93.4 81.6
MT3D [17] + GSFE(4 × 4) 97.8 94.5 83.0

Fig. 8. The relationship between recognition accuracy and feature dimensions.
From left to right are the individual results for the NM, BG, and CL scenarios
on the CASIA-B dataset.

fused features utilize the attention mechanism and the residual700

connection to obtain the updated features. In terms of training701

time and network parameters, the use of static architecture702

is more efficient than the use of attention-based structure.703

Especially, the experimental results show that the transition704

from Ts=1 to Ts=5 can achieve higher recognition accuracy.705

It indicates that gradually accumulating features from fine-706

grained to coarse-grained levels leads to better performance.707

Based on the experimental results, we conclude that the708

fine-grained branch contains more identity information than709

the medium-grained and coarse-grained branches. Therefore,710

when the fine-grained branches gradually accumulate to other711

branches, the gait feature expression ability is enriched and712

expanded to improve the recognition accuracy of the whole713

gait recognition network. In the future, we intend to develop714

more efficient model architectures that reduce parameter count715

and computational complexity while enhancing accuracy.716

4) Selection of feature dimensions: As shown in Table XII717

and Fig. 8, we explored the relationship between recogni-718

tion accuracy and feature dimensions by setting the output719

dimensions to 32, 64, 128, 256, 512, and 1024, respectively.720

Fig. 9. Comparison of three loss functions.

The results indicate that while increasing feature dimensions 721

generally boosts accuracy, excessive dimensions (such as 512 722

and 1024) slightly reduce performance, especially in the NM 723

and BG scenarios. Specifically, the optimal feature dimension 724

in the NM scenario is 256, with the accuracy reaching 98.0%. 725

Similarly, the BG scenario achieves the best accuracy of 726

95.4% at 256 dimensions. The CL scenario achieves the best 727

performance at a dimension of 128, with an accuracy rate 728

of 85.5%, but its performance is not satisfactory in the NM 729

and BG scenarios. From this experiment, we conclude that 730

increasing feature dimensions improves recognition accuracy 731

to some degree, but excessive dimensions can decrease testing 732

efficiency and enlarge model size without bringing substantial 733

accuracy improvements. Therefore, setting the feature dimen- 734

sion to 256 strikes an optimal balance between accuracy and 735

efficiency across various scenarios. 736

5) Comparison of different resolution settings: To inves- 737

tigate the impact of different branch resolutions on model 738

accuracy, we address the image-filling issue in each branch 739

and set the resolutions of the branches to 1,5,7, 1,3,5, and 740

3,5,7, respectively. The experimental results are presented in 741

Table XIII. While the branch settings varied, all other training 742

strategies remained consistent. The results demonstrate that the 743

model achieves optimal accuracy at resolution settings of 1, 744

3, and 5, which enhances its ability to extract fine-grained 745

temporal features from images. 746

6) Ablation studies on the loss functions: As indicated in 747

Table XIV, a comparison of the experimental data from the 748

three training strategies shows that combining triplet loss with 749

cross-entropy loss results in higher recognition accuracy. It 750

demonstrates that the combined training loss enhances the 751

performance of gait recognition models, particularly in cases 752
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Fig. 10. The t-SNE visualization of the feature spaces using (d) CE Loss and (e) Triplet Loss in (a) NM, (b) BG, and (c) CL scenarios.

TABLE XI. EXPERIMENTAL DATA RESULTS OF MULTI-BRANCH FEATURE FUSION (THE BEST RESULTS ARE MARKED IN BOLD).

Fusion Pattern Inference Time Model Size NM BG CL
Static structure (Ts=1→Ts=5) 2m27s 59.0m 98.0 95.4 85.0
Static structure (Ts=5→Ts=1) 2m27s 59.0m 97.8 95.1 84.5

Attention-based structure 3m01s 72.0m 98.5 95.1 84.4

TABLE XII. THE RELATIONSHIP BETWEEN RECOGNITION ACCURACY
AND FEATURE DIMENSIONS (THE BEST RESULTS ARE MARKED IN BOLD).

Feature dimensions NM BG CL
32 96.4 92.2 81.8
64 97.0 94.3 83.7

128 97.7 94.8 85.5
256 98.0 95.4 85.0
512 97.5 95.0 84.5
1024 97.1 94.7 84.5

TABLE XIII. THE EXPERIMENTAL RESULTS OF DIFFERENT
RESOLUTION SETTINGS.

Fine-Grained Medium-Grained Coarse-Grained NM BG CL
1 5 7 93.3 89.8 70.2
1 3 5 98.0 95.4 85.0
3 5 7 91.9 89.2 72.5

where the inter-class distance is large and the intra-class753

distance is small. In addition, as shown in Fig. 9, the joint use754

of triplet loss and cross-entropy loss also accelerates training755

and achieves faster convergence to a local optimum.756

To investigate the impact of triplet loss and cross-entropy757

loss on representation learning, we used the t-SNE method758

to embed seven groups of high-dimensional features into a759

two-dimensional space for visualization, as shown in Fig. 10.760

In detail, the column “a” represents the NM scenario, the761

column “b” represents the BG scenario, and the column “c”762

represents the CL scenario. The effects of cross-entropy loss763

are shown in line “d”, and the effects of triplet loss are 764

illustrated in line “e”. As can be seen in line “d”, the cross- 765

entropy loss does not form distinct clusters for certain samples. 766

By contrast, row “e” indicates that triplet loss has led to 767

denser and more effective clustering, with data points tightly 768

clustered around their centroids. It indicates that individuals are 769

more distinguishable within the gait recognition feature space. 770

The triplet loss plays a more significant role in enhancing 771

recognition accuracy, while the cross-entropy loss is more 772

conducive to faster model training. 773

TABLE XIV. ABLATION STUDIES ON THE LOSS FUNCTIONS ON
CASIA-B DATASET.

Loss Function NM BG CL
CE Loss 97.4 94.3 83.4

Triplet Loss 97.9 95.3 84.8
Triplet Loss + CE Loss 98.0 95.4 85.0

V. CONCLUSION 774

In this paper, we propose a local multi-scale and global con- 775

textual spatio-temporal (LMGCS) network for gait recognition. 776

First, the local multi-resolution feature extractor can capture 777

the fine-grained temporal features. In addition, a multi-branch 778

feature fusion module is employed to improve the spatio- 779

temporal feature diversity. Besides, the global self-attention 780

feature extractor is utilized to extract more discriminative. 781
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Meanwhile, a triplet loss is integrated with the cross-entropy782

loss to promote the network to accomplish the tasks of gait783

recognition. Experimental analysis of public datasets reveals784

the effectiveness of each module in the network. In the future,785

we will focus on developing more efficient model architectures786

that minimize parameter count and computational complexity,787

while aiming to enhance accuracy.788
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