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Region-Aware Quantum Network for
Crowd Counting
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Abstract—Crowd counting has substantial practical applica-
tions in various consumer-oriented areas, particularly for safety
assessments and marketing strategies. However, considering
the complexities of the capturing conditions, the unavoidable
background interference possesses the potential to disrupt the
effectiveness of established counting methods, and it further
poses degraded counting performance. To address this challenge,
we propose a Region-Aware Quantum Network (RAQNet) by
attentively learning from the crowd region. It consists of four
key components, namely the feature extractor, the object region
awareness module (ORA), the quantum-driven calibration (QDC)
module, and the decoder module. The cascaded ORA modules
are engineered for the extraction of local information, which ad-
dresses background interference. Additionally, two QDC modules
are incorporated to capture global information, which utilizes
quantum states to calibrate features. Extensive experimental
results conducted on four crowd benchmark datasets and three
cross-domain datasets prove that the RAQNet outperforms the
state-of-the-art competitors, both subjectively and objectively.

Keywords—Consumption, Crowd counting, Quantum Network,
Convolution neural network, Regional attention

I. INTRODUCTION

In smart city systems, crowd counting plays a pivotal role in
aiding business operators in understanding traffic patterns [1]—
[3]. Businesses can efficiently allocate resources through the
analysis of peak hours and popular zones within a store or
mall. By identifying areas frequented by customers, stores can
strategically position products and displays. This optimization
enhances the customer experience by facilitating the easy lo-
cation of desired items, which results in increased satisfaction
and potentially more purchases [4]. Simultaneously, the field
of crowd counting is continuously evolving and expanding its
applications. It can be applied to high-level vision tasks, such
as crowd tracking and 3D human pose estimation [S]—[7].

The crowd counting methods can be categorized into three
classes, namely detection-based [8], regression-based [9], and
density estimation-based methods [7], [10], [11]. Remarkably,
the density estimation-based method leverages the robust fea-
ture extraction capabilities of Convolutional Neural Networks
(CNNs) to generate a density map. Crowd counting is then
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Fig. 1.

Challenge of background interference in crowd scenarios.

accomplished by summing the pixel values on the density
map [12], [13]. These methods exhibit superior accuracy
and stability compared with the other two types of methods.
However, the chaotic background interference often misleads
the model to recognize the object areas incorrectly and leads to
the overestimation or underestimation of the counting results.
Some examples of background interference are illustrated in
Fig. 1. The presence of background noise in the crowd image,
e.g., billboards and banners, will mislead the model into
incorrectly identifying heads. To address this challenge, several
attention-based algorithms have been introduced to filter the
target region from the background. Sindagi et al. [14] proposed
a spatial attention module to merge segmentation features and
several global attention modules, thereby enhancing informa-
tion interaction among different channels. Gao et al. [15]
developed a foreground-background segmentation module to
highlight the crowd region. Guo et al. [16] introduced a triple-
view attention module to adjust weights in both spatial and
channel dimensions. Zhai er al. [2] introduced the concept
of channel-spatial self-attention to bolster the capacity of the
model to adapt to crowd dynamics.

Despite persistent efforts, performance remains unsatisfac-
tory. The main reason is that the previous methods focus on
global features and ignore the local features, which are crucial
to distinguish the crowd from the background. In this paper,
we proposed a Region-Aware Quantum Network (RAQNet)
to learn regionally focused crowds. The proposed RAQNet
consists of four parts, i.e., feature extractor, ORA module,
QDC module, and decoder. First, a feature extractor is built
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to extract the basic features. Subsequently, the ORA module
captures localized information around the crowd region and
utilizes the regional attention (RA) unit to mitigate background
noise. Furthermore, the QDC module calibrates input features
by employing a quantum attention (QA) unit to compute global
features via qubit rotation in tandem with the Pauli operator.
Six ORA modules and two QDC modules highlight the crucial
information within local and global contexts in a mutual-
promotion manner to promote counting accuracy. At last, the
decoder utilizes multiple transposed convolution to predict the
density map. In a nutshell, the contributions of this paper are
as follows.

1) We proposed an RAQNet to alleviate the background
cluster for dense crowd counting.

2) We built an ORA module to extract the local infor-
mation and combine it with the RA unit to suppress
background interference.

3) We designed a QDC module to capture the global
information and integrated the QA unit to calibrate
features for increasing generalization performance.

4) Comprehensive experiments on four crowd benchmark
datasets and three cross-domain datasets are conducted
to verify the superiority and generalization of the
RAQNet.

II. RELATED WORK
A. CNN-based crowd counting

Crowd counting is a dedicated field focused on the precise
estimation of the number of individuals [17]. Zhang et al. [18]
developed a lightweight model with three columns to facilitate
multi-scale feature extraction. Sindagi et al. [14] proposed a
hierarchical attention-based network termed HA-CCN. This
network comprises a spatial attention module designed for
the fusion of segmentation features and a sequence of global
attention modules aimed at enhancing information interaction
across the channel dimension. Gao et al. [15] developed a fore-
background segmentation module to generate a segmentation
map. This map serves to highlight the object region while
simultaneously mitigating the influence of background clutter.
Sam et al. [19] presented a locate-size-count network termed
LSC-CNN to obtain multiscale information and incorporated
a Grid Winner-Take-All (GWTA) loss function to mitigate the
problem of local minima. Guo et al. [20] integrated a triple-
view attention module to address background disturbances and
incorporated a pyramid feature aggregation module to extract
multiscale features. Kilic et al. [21] introduced a heatmap
learner CNN (HLCNN) for car counting tasks. The HLCNN
employs a customized VGG architecture as its backbone, with
the final three fully connected layers substituted with three
convolutional adaptation layers.

B. Quantum machine learning

Quantum machine learning is an emerging discipline that
leverages the principles of quantum mechanics to enhance tra-
ditional machine learning algorithms. By harnessing qubits and
quantum operations, quantum machine learning demonstrates

the capability to perform complex computations exponentially
faster than classical computers. This empowers the exploration
of new algorithms, optimization methods, and data analysis
techniques.

Recent research has witnessed the development of quantum
counterparts to classical models, exemplified by the Quantum
Regressor [22] and Quantum Variational Autoencoder [23].
The primary objective is to exploit the distinctive character-
istics of spatial transformations within quantum circuits when
incorporated into the realm of machine learning. The introduc-
tion of the Quantum network aims to capitalize on its beneficial
spatial feature transformations and its capability for modeling
intricate functional relationships. Nguyen et al. [24] introduced
a quantum neural network (QNN) that exhibits resilience to
both noise and decoherence. The introduction of the QNN
module presents solutions to challenges related to population
counting. Besides, the quantum network is applied in the crowd
counting domain. It can exploit the quantum superposition
and entanglement to achieve higher-dimensional and non-
linear feature representation, which can improve the accuracy
and robustness of crowd counting in complex scenarios. The
Quantum Image Feature Extraction with Dense Distribution-
Aware Learning (QE-DAL) [25] framework was proposed by
Hu er al. to address challenges arising in densely populated
crowd scenes. The multi-scale module of QE-DAL acquires
four distinct feature maps by employing convolutional blocks
of different scales, which are subsequently integrated to create
a density map. In addition, Hu et al. [26] employed a refined
distance compensating with a quantum scale-aware learning
framework (RDC-SAL) to tackle crowd counting and localiza-
tion tasks. The RDC-SAL incorporates a dedicated quantum
layer into its front-end feature extraction module. Therefore,
this model enables the efficient extraction of densely populated
crowd features of varying sizes.

III. METHOD
A. Overview

The architecture of the proposed RAQNet is illustrated in
Fig 2. Tt consists of four components, i.e., feature extractor,
object region awareness (ORA) module, quantum-driven cal-
ibration (QDC) module, and decoder. For the input image I,
the feature extractor adopts VGG-19 to extract the low-level
feature and generate a feature map. Afterward, an ORA module
extracts the local information around the crowd region and
utilizes the regional attention (RA) unit to suppress background
noise. In addition, a QDC module is integrated with the
quantum attention (QA) unit, which utilizes the qubit rotation
in combination with Pauli operators to calibrate the feature.
Then, six ORA modules and two QDC modules are stacked
to highlight the crucial information within local and global
contexts. The final decoder is applied to increase the resolution
of the enhanced feature map and make predictions for the
density map.

B. Object Region Awareness Module

In the crowd counting domain, the task of quantifying
individuals within intricate background scenes is a common
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Fig. 2. Architecture of the proposed RAQNet for crowd counting.
challenge. To tackle this problem, we utilize an ORA module Object Region Awareness Module
to focus on the foreground elements while disregarding the | .-~~~ =" ~--~-------=--=---=-=--=-=-=-=--- N
complexities of the background. Specifically, the ORA module Y
incorporates a regional attention (RA) unit for foreground- v v .
related feature learning. Meanwhile, the residual connection 1
mechanism is employed to ensure the preservation of the Norm :
original feature information. Subsequently, the “add & norm” R FF & %

. . . . . —> & e —>»{+)—>» Norm —+—>
operation is employed to implement residual connections and Add Unit iy i
layer normalization within the ORA module. The feed-forward .
(FF) unit performs non-linear channel dimension mapping by !
employing a 1 x 1 convolutional layer, thereby enhancing the = | '~ - d Moo oo oo o oo e oo oo oo -’
effectiveness of feature representation. To extract positional
features between different features, we build the positional Regional Attention Unit
encoding generator (PEG) between two consecutive ORA
modules.. Meanwh@le, the proposed module employs a3 x 3 Convl _, | BN
convolution operation to extract spatial features. It is essential 25
to emphasize the application of deep separable convolution Tnput (B.C2HW] [BEHW.CB] |15 ¢ pew ew]
within the PEG framework, where individual convolution Il "

. . onvl
operations are executed independently for each channel. | . — K —>®—> W

The RA unit aims to guide the focus of the proposed [

network toward the pertinent human subjects, rather than [B.CHW] [B.C/2.H,W] [B.8.H*W.C/8]
intricate and irrelevant backgrounds. Additionally, it facilitates Cramwl
the model in gaining a comprehensive understanding of the 256 v
correlations and density distribution among distinct regions. Output [B.C/2H.W] [B.8.H*W.C/8]

The architecture of the RA unit is shown in Fig. 3. Given an
input feature map, a series of 1 x 1 convolution operations
are employed to generate query (@), key (K), and value
(V') matrices. Simultaneously, the dimension of the channel is
halved to reduce the computational demands on the model and
enhance the computational efficiency. Then, an ensemble of
eight attention heads is employed to acquire diverse attention
weights. It enables the model to focus more effectively on the
regions of interest. The regional attention is formulated as,

Q- K"

R(QyK,V)=S< v, (1
Vi

where S(-) represents a softmax activation function. dj, denotes

the dimension associated with each attention head and it is set

to 32.

C. Quantum-Driven Carlibration Module

While the ORA module effectively mitigates background
noise, it inevitably sacrifices positional accuracy and captures
only a limited amount of global perceptual information. To
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Fig. 3. Architecture of the ORA module.

enhance the refinement of information extracted from the ORA
module, we use the quantum convolutional neural network to
transform feature maps into quantum states. The diagram of
the QDC module is illustrated in Fig. 4. It exhibits structural
similarities with the ORA module which contains the residual
structure, the FF unit, and the positional code generator. The
major difference is the embedding of the QA unit in the QDC
module. The QA unit comprises three key components, namely
the quantum encoder, quantum circuits, and the quantum
decoder. Firstly, the input feature map f, is encoded through
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Fig. 4. Architecture of the QDC module.

the input channels within the encoder layer. The Hadamard H
gate is applied to each quantum bit (qubit), which transforms
each qubit from the ground state to a superposition state and
places them in a superposition of |0) and |1). Subsequently,
the R gate is applied to each qubit. The R gate is a rotation
gate, with its rotation angle being determined by the respective
values in the input data [24]. This step rotates each qubit in
the superposition state. It is formulated as follows,

Q. = cos (fz)|0) + sin (fz) [1), ()

where f, denotes the input feature map. @, represents the ini-
tial quantum state. {cos(+), sin()} represents the qubit rotation
gate.

The quantum circuit is triggered by the initial state Q..
Subsequently, the quantum filter can calculate quantum states
utilizing the sliding window. Furthermore, random parameters
are selected from a uniform distribution and utilized to calcu-
late the expected output value O,. It is facilitated using the
Pauli operators [27], which are denoted as follows,

c(0) = e~th?, 3)

O, =c(0) |F(Q,- Wm;n» ) 4)

where O, represents output quantum stats. ¢(f) denotes the
parametric quantum circuit. “—7” represents the imaginary

unit. A represents the Hamiltonian operator, which describes

the energy of the system [28]. 6 is a vector of parameters.
F(-) employs the quantum filter, which uses the parameterized
sliding window W,, , with dimensions m x n.

The quantum decoder primarily serves the purpose of align-
ing the output of the quantum circuit layer with the expected
output of a typical convolution layer. In this research, the
sigmoid operator is employed to compute the final decoded
state. It is formulated as follows,

where Sig(+) represents the sigmoid function.

D. Loss Function

The MSE loss is deployed to optimize the model during the
training stage. It is represented as follows,

1 N
Luse = 3 3 [|Fe* = FY. ©®

i=1

where N denotes the overall headcount. F¢** and F?" repre-
sent the estimated and the ground-truth count of the i-th image.
H||§ represents Euclidean norm squared.

IV. EXPERIMENTS AND ANALYSIS
A. Implementation Details

The training samples are subjected to random cropping,
generating dimensions of 256 x 256 for the ShanghaiTech and
Ship datasets, and 512 x 512 for other datasets. This disparity
in dimensions is attributed to the smaller image size of the
ShanghaiTech dataset. Network optimization is facilitated by
the Adam optimizer, initialized with a learning rate of 10~*
and a weight decay rate of 5 x 10~%. The batch size is set to
16 during the training process. The experimental framework
is founded on the MindSpore platform, with computational
support provided by the NVIDIA 3090 GPU.

B. Datasets

ShanghaiTech [18] is segmented into two categories: SHA
and SHB. The SHA dataset includes randomly sourced images
from the internet with a wide range of resolutions. The SHB
dataset comprises images obtained from surveillance devices
installed along a street in Shanghai, and they are characterized
by a uniform resolution. SHA displays higher crowd density
compared to SHB.

UCF_CC_50 [29] is a densely crowded dataset featuring
a wide array of scenarios, including crowd parades, sport-
ing events, and religious assemblies. The images within the
dataset are in greyscale, and certain samples contain only
head information, which makes accurate counting considerably
challenging.

UCF-QNREF [30] is one of the most challenging datasets,
distinguished by its extensive variation in scale and diverse
perspectives. The dataset comprises high-quality images that
impose a substantial computational load on GPUs, which
necessitate resizing during the training process.
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JHU-Crowd++ [31] is a relatively new dataset that en-
compasses various challenges, such as weather variations and
scale variations. Additionally, it contains a considerably large
number of samples, making it a challenging dataset.

CARPK [32] is specifically designed for car counting, and
the images are captured from various parking lots in a bird’s-
eye view using drones.

PUCPR+ [32] is another vehicle counting dataset, which
contains fewer samples compared to CARPK. It includes
diverse weather conditions, adding an extra layer of complexity
to the counting task.

RSOC [33] is subdivided into four distinct categories,
namely, buildings, large vehicles, small vehicles, and ships,
taking into account various object attributes. Building sub-
dataset is composed of fixed-size images with relatively low
resolution, obtained from Google Earth. These images exhibit a
high density of architectural structures within the dataset. Ship
sub-dataset comprises a collection of high-resolution images
that primarily depict small watercraft. These images exhibit
a range of characteristics, including diverse orientations, non-
uniform spatial distribution within the dataset, and substantial
variations in terms of their overall scale.

C. Evaluation Metrics

The Mean Absolute Error (MAE) and Root Mean Square Er-
ror (RMSE) are adopted to measure the counting performance.
They are defined as,

1
MAE:N@*QM (N

L 2
RMSE = N ‘Ci — Ci| 5 (8)
where N denotes the number of test images. ¢; and c¢;
represent the estimated value and ground truth of the ¢-th
image, respectively. A lower value of the two criteria represents
better counting accuracy and robustness of the model.

D. Comparison with State-of-the-art Methods

To validate the effectiveness of the proposed method, we
conducted comparative experiments with 12 state-of-the-art
(SOTA) methods on four distinct datasets. The objective com-
parison results are shown in Table I. In the densely populated
SHA dataset, the proposed RAQNet attained scores of 59.0
and 101.2 on MAE and RMSE, respectively. Due to the scene
diversity of SHA, the proposed model cannot adapt well to
all scenarios leading to a relatively high RMSE. Compared
with the second-ranked TEDNet [10], the proposed network
demonstrates a decrease of 8.1% in the MAE and a 7.2% in
the RMSE. Compared with the fusion approach that involves
multiple models LSC-CNN [19], the proposed RAQNet leads
to an improvement in both MAE and RMSE, with increments
of 11.1% and 13.5%, respectively. On the relatively sparse Part
B dataset, the RAQNet attains an MAE of 9.0. Meanwhile, the
value of RMSE is 15.4. Similar to the results on SHA, the MSE
and RMSE are not optimal on SHB. The reason lies that the

SHB is captured by surveillance cameras on the street, and the
irregular placement results in perspective distortions.

When evaluated on the densely populated UCF_CC_50
dataset, the proposed RAQNet demonstrates remarkable com-
petitiveness, and it achieves MAE and RMSE scores of 177.1
and 247.6, respectively. In comparison to the second-best PCC-
Net [15], the RAQNet shows a remarkable 26.2% improvement
in MAE and a corresponding 21.5% improvement in RMSE.
The results indicate that the proposed method performs well
in densely populated scenarios.

Compared to other SOTA methods, the proposed RAQNet
exhibits substantial competitiveness on the UCF-QNRF
dataset. In contrast to the TEDNet [10], the proposed RAQNet
exhibits remarkable performance enhancements. The RAQNet
delivers substantial improvements of 5.7% and 1.0% in MAE
and RMSE, respectively. Compared with the DFNet [34] which
leverages the hierarchical features to address the background
noise, the RAQNet archives 51.2% and 47.9% improvement
in MAE and RMSE. The objective results demonstrate the
efficacy of the proposed network in addressing the challenge
of background noise.

In the JHU++ dataset, which encompasses crowd-counting
data collected in diverse scenarios, the proposed RAQNet
exhibits strong performance. It scores 66.7 and 196.3 in MAE
and RMSE, respectively. In comparison to the CG-DRCN [31],
which is built for eliminating background interference, the
proposed RAQNet demonstrates an improvement of 6.1% in
MAE and 29.5% in RMSE.

The subjective results from the datasets are presented in
Fig. 5. It shows that the estimated density maps and count
numbers closely align with the ground truth. These results
underscore the capability of the proposed method to accurately
perform crowd counting even in complex backgrounds.

Fig. 5. Subjective results on cross-domain datasets.

E. Cross-domain Analysis

To further validate the generalization ability of the proposed
method, we perform cross-domain analysis on two vehicle
counting datasets and a remote sensing dataset, i.e., CARPK,
PUCPR+ [32], RSOC [33]. Table II exhibits competitive
results between the proposed RAQNet and the state-of-the-art
vehicle counting methods. The quantitive results prove that the
RAQNet performs better than other competitors. Specifically,
on the CARPK dataset, the proposed method scores 5.38 in
MAE and 7.83 in RMSE. Compared to the second-ranked
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TABLE 1. OBJECTIVE COMPARISON RESULTS ON CROWD COUNTING. (THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.)
Part A Part B UCF_CC_50 UCF-QNRF JHU++

Method _ _ _ _ _

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
MCNN [18] 110.2 173.2 26.4 41.3 377.6 509.1 277.0 426.0 188.9 483.4
Switch-CNN [35] 90.4 135.0 21.6 334 318.1 439.2 - - - -
A-CCNN [36] 85.4 124.6 19.2 31.5 - - 367.3 - 171.2 453.1
SANet [37] 67.0 104.5 8.4 13.6 258.4 3349 - - 91.1 320.4
CSRNet [38] 68.2 115.0 10.6 16.0 266.1 397.5 - - 85.9 309.2
RAZ [39] 65.1 106.7 8.4 14.1 - - 116.0 195.0 - -
TEDNet [10] 64.2 109.1 8.2 12.8 249.4 354.5 113.0 188.0 75.0 299.9
LSC-CNN [19] 66.4 117.0 8.1 12.7 - - 120.5 218.2 112.7 454.4
SUA-Fully [40] 66.9 125.6 12.3 17.9 - - 119.2 213.3 - -
DFNet [34] 71.6 129.7 14.1 21.1 402.3 434.1 218.2 3574 - -
PCCNet [15] 73.5 124.0 11.0 19.0 240.0 315.5 148.7 247.3 - -
CG-DRCN [31] 64.0 98.4 8.5 14.4 - - 112.2 176.3 71.0 278.6
RAQNet (Ours) 59.0 101.2 9.0 15.4 177.1 247.6 106.5 186.1 66.7 196.3

BL [41], the proposed RAQNet demonstrates a notable im-
provement of 43.8% in MAE and 31.1% in MAE and RMSE,
respectively. Unlike the CARPK dataset, the PUCPR+ dataset
exhibits a significant challenge due to the inconsistency in
weather conditions, which poses a formidable obstacle for ob-
ject counting. In comparison to these counterparts, the RAQNet
under consideration exhibits a notable level of performance on
the dataset. The objective results illustrate that the RAQNet
achieves an MAE of 1.71 and an RMSE of 2.54, which
performs best among the competitors. _‘ i
The objective results of the proposed method on Building T ‘ TSN oN
and Ship datasets are depicted in Table III. On the Building i ] o
dataset, the RAQNet obtains the first place, and it achieves & 7 Visual analysis with State-Of-The-Art (SOTA) approaches. The
. proposed RAQNet model adeptly determines the object locations and gen-
an MAE of 7.08 and an RMSE of 10.58. Compared with the erates a precise density map. Compared with other SOTA models, RAQNet
suboptimal method TASNet [16], it shows a 7.2% reduction outperforms in counting objects across diverse scenarios.
in MAE and a 6.0% reduction in RMSE. On the Ship dataset,
the proposed method performs best compared with the com-
petitors. It scores 79.98 and 188.76 on the metrics for MAE

TABLE II. COMPARATIVE RESULTS ON THE CARPK AND PUCPR+
DATASETS. (THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.)

and RMSE, respectively. Method CARPK PUCPR+
. . . ethods

Some visualization results on the CARPK, PUCPR+, and ’ MAE RMSE MAE RMSE
RSOC cross-domain datasets are illustrated in Fig. 6. The YOLO [43] 102.89 1002 156.72 200.54
subjective results highlight the effectiveness of the proposed FRCN [44] 103.48 110.64 156.76 200.59
approach in accurately conducting vehicle counting. Be- IL‘EII\’I [[‘2’2]] ;igg 1679 g;g 3446
sides, some visual comparison of RAQNet with other models RetinaNet [46] 16.62 22.30 24.58 33.12
(MCNN [18] SCAR [42] ASPDN [3’3]) on the Shl dataset One-Look Regression [47] 59.46 66.84 21.88 36.73
A > O ’ - p MCNN [18] 39.10 43.30 21.86 29.53
is illustrated in Fig. 7. It proves that the proposed method CSRNet [38] 11.48 13.32 8.65 10.24
; ; it ; ; BL [41] 9.58 11.38 6.54 8.13
can a.lccurately. predict the number of identities with precise PSGCNet [45] 01 1046 e T3
locating of objects. TASNet [16] 7.16 1023 5.16 6.76
RAQNet (Ours) 538 7.83 171 2.54

TABLE IIL COMPARATIVE RESULTS ON THE RSOC DATASET. THE
BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Building Ship
Methods
MAE RMSE MAE RMSE
. MCNN [18] 13.65 16.56 263.91 412.30
GT: 3280 . GT: 525.0 SANet [37] 29.01 32.96 302.37 436.91
7 CSRNet [38] 8.00 11.78 240.01 394.81
SCAR [42] 26.90 31.35 302.37 436.92
SPN [49] 7.74 11.48 24143 392.88
. ) CAN [50] 9.12 13.38 282.69 423.44
Est: 328,0 © | Est: 532.0 SFCN [51] 8.94 12.87 240.16 394.81
TASNet [16] 7.63 11.25 191.82 278.17
SFANet [52] 8.18 11.75 201.61 332.87
Fig. 6. Subjective results on cross-domain datasets. ASPDN [33] 7.54 10.66 193.83 318.95
RAQNet (Ours) 7.08 10.58 79.98 188.76
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F. Efficiency comparison

To verify the efficiency of the proposed RAQNet, efficiency
comparisons are carried out to measure the complexity of
the calculations, e.g., GFLOPs, inferring time and frame per
second (FPS). The input size is set to 576 x 768. The
comparison results are illustrated in Table IV. Comparative
results prove that the proposed method RAQNet can achieve
the best values of 250.8, 35.2, and 28.3 in GFLOPs, inferring
time and FPS. Specifically, the RAQNet reduces the GFLOPs,
inferring time and FPS by 2.1%, 2.5%, and 2.2% compared
with the ASPDN [33] which employs a feature pyramid
module and deformable convolution module to suppress clutter
backgrounds.

TABLE IV. COMPARISON RESULTS OF THE RAQNET AND OTHER
METHODS IN CALCULATIONS AND PARAMETERS.
Methods GFLOPs Inferring time (ms) FPS
SASNet [53] 393.2 45.6 21.9
ASPDN [33] 256.2 36.1 27.7
SFCN [51] 274.1 39.9 25.1
RAQNet (Ours) 250.8 352 28.3

G. Ablation Studies

1) Ablation studies on the proposed ORA module: To assess
the effectiveness of the proposed ORA module, we conducted
ablation experiments on the combination of the ORA module.
Table V shows the objective results of the ablation study of
the ORA module on the SHA dataset. The notation “Number
of ORA” indicates the introduction of ORA modules into
the baseline, where “n” represents the number of ORA mod-
ules. According to Table V, the six ORA modules structure
demonstrates an enhancement in system performance with
the increasing number of incorporated ORA modules. When
equipped with six ORA modules, the model achieves an
MAE score of 60.0 and an RMSE score of 103.1. Compared
with the baseline, the proposed model improves MSE and
RMSE by 8.95% and 13.3%, respectively, when using six
ORA modules. Along with increasing the number of ORA
modules to eight, the performance of the proposed approach
experiences a degradation, and the model scores 65.4 in MAE
and 108.2 in RMSE. Moreover, the proposed network is based
on the transformer architecture, which suffers from overfitting
problems when the training data is insufficient. Therefore, we
opt to integrate six ORA modules into the baseline to enhance
system performance.

TABLE V. OBJECTIVE EXPERIMENTAL RESULTS OF THE ABLATION
STUDY ON THE ORA MODULE. THE BEST RESULTS ARE HIGHLIGHTED IN
BOLD.

Number of ORA MAE RMSE
0 65.9 114.3
2 62.4 110.8
4 61.5 107.2
6 60.0 103.1
8 65.4 108.2

AL

Baseline+ORA+QDC

Img Baseline BaselinetORA Baseline+QDC

Fig. 8. The qualitative comparison of the baseline with different components.

2) Ablation studies on the proposed QDC module: To fur-
ther evaluate the effectiveness of the QDC module, we con-
ducted ablation experiments on the number of QDC modules
within the context of six ORA modules. Table VI presents the
ablation results of the QDC module quantities on the SHA
dataset. In Table VI, the term “Number of ORA” signifies
the integration of QDC modules into the baseline within the
context of the six ORA modules. When the QDC module is
integrated into the model, it is observed that the proposed
model demonstrates a 1.1% and 0.3% improvement in the
MSE and RMSE, respectively. This demonstrates that the
independent integration of the QDC module can enhance the
performance of the method. The results show that the ORA and
QDC modules adeptly acquire both local and global informa-
tion within the images, thereby resulting in improved model
performance. Particularly, when using two QDC modules, it
leads to a 4.1% increase in MAE and a 7.1% increase in RMSE
compared to the baseline model.

TABLE VI. OBJECTIVE EXPERIMENTAL RESULTS OF THE ABLATION
STUDIES ON THE PROPOSED QDC MODULE. (THE BEST RESULTS ARE
HIGHLIGHTED IN BOLD.)

Number of QDC MAE RMSE
0 61.5 108.9
1 60.8 108.6
2 59.0 101.2
3 65.4 115.1

3) Visualization of the ORA module and QDC module: The
visualization results of the baseline with different components
are shown in Fig. 8. It shows that both the ORA module and
QDC module are helpful in boosting the counting performance.
The proposed ORA module can effectively extract local infor-
mation to suppress the background noise. The QDC module
can capture more global information to calibrate input features.
Moreover, the problem of background clutter is alleviated by
adding the two modules to the baseline, but the compound
mode of “Baseline+ORA+QDC” (RAQNet) achieves the best
results.

4) Ablation studies on backbone networks: In addition to
investigating the efficacy of the proposed modules, we conduct
ablation studies on the backbone networks. Three networks,
namely HRNet [54], VGG-16 [55], and VGG-19, serve as
the adopted backbones. Comparative results are presented
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Fig. 9. The failure cases. The first row, the second row, and the third row
depict the exemplars, the ground truth, and the estimated results, respectively.

in Table VII. It demonstrates that utilizing VGG-19 as the
backbone network yields the most favorable performance. In
fact, VGG is a commonly used backbone for feature extraction
in numerous counting tasks [33], [38] owing to its robust
generalization capability.

TABLE VII. COMPARATIVE RESULTS OF DIFFERENT BACKBONES ON
THE SHIP DATASET. THE BEST PERFORMANCES ARE HIGHLIGHTED IN
BOLD.
Methods MAE RMSE
RAQNet(HRNet) 65.2 111.2
RAQNet(VGG-16) 64.8 107.4
RAQNet(VGG-19) 59.0 101.2

H. Failure cases

While the RAQNet exhibits superior performance in dense
crowd scenarios, some unsatisfactory outcomes are observed in
challenging scenes, as illustrated in Fig. 9. It shows that low-
light conditions cause the estimated density maps to include
unwanted background noise. This is because the features of the
head regions and the background regions are similar in dim-
light environments. In future work, we will further investigate
to explore more robust crowd feature map extraction methods
for low-light environments.

V. CONCLUSION

In this paper, we proposed an RAQNet to address the
problem of background interference for dense crowd counting.
The RAQNet consists of a feature extractor, an ORA module, a
QDC module, and a decoder. The feature extractor can abstract
the low-level feature. The ORA module is combined with
the RA unit to suppress the background noise. Meanwhile,
the QDC module is devised based on the QA unit, and it
can calibrate features through qubit rotation combined with
the Pauli operator. The decoder is utilized to generate the
prediction map. Experiments are carried out on four crowd
counting datasets and three cross-domain datasets, and com-
parative results verify the superior counting performance of
the proposed RAQNet.
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