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Abstract. Crowd counting is a considerable yet challenging task in intelligent video surveil-
lance and urban security systems. The performance has been significantly boosted along with the
springing up of the convolutional neural networks (CNNs). However, accurate and efficient
crowd counting in congested scenes remains under-explored due to scale variation and cluttered
background. To address these problems, we propose a biologically inspired crowd counting
method named group-split attention network (GSANet). The GSANet consists of three principal
modules, namely GS module, dual-aware attention module, and aggregation module. The GS
module processes the subfeatures of each group in parallel, and groups the input feature map to
reduce the computational cost. The dual-aware attention module synergies the spatial and chan-
nel dimensional information to alleviate the estimation error in background regions. The aggre-
gation module adopts a learning-based cross-group strategy to aggregate and facilitate the fusion
of feature maps along different channel dimensions. Extensive experimental results on five
benchmark crowd datasets demonstrate that the GSANet achieves superior performances in
terms of accuracy and efficiency. © 2022 SPIE and IS&T [DOI: 10.1117/1.JEI.31.4.041214]
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1 Introduction

The task of crowd counting is to estimate the number of people in crowded scenes. It has aroused
much attention in recent years, as it plays a considerable role in many real-world applications,
e.g., video surveillance, smart city governance, and public safety management.1–3 However,
scale variation and cluttered backgrounds in highly congested crowed scenes are still challenging
in this domain.4,5 The scale variations are caused by camera perspective distortion, which results
in different distances between heads and cameras. And the cluttered background region (e.g.,
trees, buildings, vehicles, and so on) is similar to the foreground’s region (e.g., head area) which
leads to estimation errors in highly congested crowd scenes. The challenges in a congested scene
are shown in Fig. 1.

To address the aforementioned problems, many efforts have been devoted5 and many meth-
ods have been proposed. These methods can be divided into three categories, namely detection-
based methods,6–8 regression-based methods,9,10 and deep learning-based method.5,11 The
detection-based methods7,8 generally detect the person instances with pretrained detectors.12,13

Although it performs well in sparse scenes, the estimation accuracy degrades to a large degree
in congested scenes. The regression-based methods9,10 build a mapping between low-level
features and the crowd number. However, it tends to omit the location information, this is sub-
optimal for detection. Recently, benefitting from the powerful learning ability of convolutional
neural networks (CNNs), the deep learning-based methods have play a dominant role in crowd
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counting.4,14 The deep learning-based methods address this problem by estimating a density
map, and estimate the number of crowds by integrating over the density map. As complementary,
the attention mechanism has been adopted as a guidance to improve the counting accuracy.15,16

Benefiting from the attention mechanism, the head region can gain more attention than the non-
head region. Thus, the background disturbance can be suppressed. However, the deep learning-
based models are extremely inefficient, which require significant computational cost and run at
a low speed.17,18 To solve this problem, some lightweight networks for crowd counting were
proposed.19,20 However, these methods struggle in seeking a satisfying trade-off between accu-
racy and efficiency.

In this paper, we put forward the group-split attention network (GSANet) for accurate and
efficient crowd counting. The proposed method mainly consists of three modules, i.e., GS mod-
ule, dual-aware attention module, and aggregation module. The GS module is designed to proc-
ess the features of each group in parallel, which divides the input feature map into groups to
reduce the computation cost. The attention module is designed in a dual-aware pattern, consist-
ing of a spatial attention (SA) unit and a channel attention (CA) unit. The former unit concen-
trates on the head region, while the later unit guides the network to focus on the relation between
channel maps to eliminate the error estimation for background. With the guidance of the atten-
tion module, the head region in the estimated density map gains more attention in encoding the
final density map. Third, an aggregation module is built to fuse the multidimensional feature
maps. Meanwhile, it cooperates with the GS module to reduce the computing time. To sum up,
the contributions of our work are three aspects.

1. We design a GS module and an aggregation module to process the features of each group
in parallel, which can reduce the computation cost and fuse multidimensional features,
simultaneously.

2. We build an attention module in a dual-aware pattern, which gains more attention in the
head region to copy with the problems of scale variation and cluttered background.

3. We carry out extensive experiments and ablation studies to verify the performance of
counting in challenging scenarios and the effectiveness of the individual components
in the proposed GSANet.

The rest of the paper is structured as follows. Section 2 presents an overview of the relevant
work. Section 3 introduces the details of the proposed GSANet. Comparative results and dis-
cussions are presented in Sec. 4. This work is concluded in Sec. 5.

2 Related Work

2.1 Detection-Based Method

This method mainly employs a sliding-window-like detector scanning the image, and detecting
the body or head of each person. Then, a classifier is trained to determine the positive instances.21

Dollar22 built a slide window detector over the image for crowd counting. Similarly, Li et al.6

constructed detectors on the head and shoulder to estimate the number of people in the surveil-
lance area. Recent approaches seek an end-to-end schema by CNN-based object detectors to
improve the accuracy.23,24 Although the detection-based method is successful in low-density
scenes, the performance in highly congested environment is still unsatisfying.

(a) Scale variation (b) Cluttered background

Fig. 1 The challenges in congested scene. (a) Scale variation and (b) clusttered background.
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2.2 Regression-Based Method

This approach aims to build a regression model to map the image characteristics to crowd num-
ber. These are feasible approaches in congested environments, as they don’t require explicit
pedestrian detection and segmentation. Davies et al.25 pioneered the regression method in crowd
counting by extracting the underlying features and building a linear regression model to map the
features to the crowd number. Paszke et al.26 adopted a random forest regression to learn the
mapping of nonlinear features to people. Lempitsky and Zisserman27 used spatial distribution
information to regress a density map. However, these methods ignore the location information of
each person, thus the practical application is limited.28

2.3 Deep Learning-Based Method

In recent years, benefitting from the strong ability of feature expression and computing resour-
ces, the deep learning has achieved great success in computer vision.29–33 Zhang et al.14 proposed
a multicolumn CNN (MCNN) model to increase the receptive field to address the problem of
scale variations. Similarly, a switch-CNN4 was proposed through a switching mechanism multi-
column architecture to utilize the features among different scales. However, the multicolumn
CNNs are usually difficult to train.34,35 To address this problem, Li et al.36 adopted a single
column fully convolutional network37 with cascaded dilated convolutional layers. Besides, many
other architectures were designed to improve the estimated accuracy.

In addition, attention-based modules have been adopted in this domain to improve the esti-
mation accuracy. Zhang et al.38 proposed an attention model for crowd counting by estimating
a probability map between the head areas and the nonhead areas. Hossain et al.15 proposed a
scale-aware network by combining both the global and local scale attentions.

Although the CNN-based methods achieve remarkable progress, their performance comes
with the cost of burdensome computation. In this regard, how to reduce the number of param-
eters in the network draws much attention. For instance, Wang et al.19 designed an encoder–
decoder architecture with limited computation resources. Cao et al.39 designed a scale aggrega-
tion network to improve the representation ability and scale diversity of density map in crowd
counting. However, these approaches fail to find a balance between efficiency and accuracy. In
this work, a GSANet is proposed to strike an optimal balance between accuracy and efficiency.

3 Proposed Method

3.1 Overview

As depicted in Fig. 2, the GSANet consists of three modules, i.e., GS module, dual-aware atten-
tion module, and aggregation module. First, following the general setting, a tailored ResNet-50
with the first three layers is used as the backbone network to extract features. Next, we adopt the
group split module to process the features of each group in parallel and divide them into sub-
groups. Then, a dual-aware attention module consisting of an SA unit and CA unit is built upon
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Fig. 2 Flowchart of the GSANet for crowd counting.
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each group. Further, the two units are concatenated and transported to the aggregation module to
fuse the subfeatures among different channel dimensions. Finally, an up-sample operation is
applied to the output to predicate the density map.

3.2 Group-Split Module

The GS module takes the feature maps from the backbone as input and splits them into sub-
groups, as shown in Fig. 2. For a given feature map F ∈ RC×H×W , where C,H, andW denote the
channel number, height, and width, respectively. The GS module first divides F into G (G ¼ 32

in this work) groups along the channel dimension

EQ-TARGET;temp:intralink-;e001;116;614F ¼ ½F1; F2; · · · ; FG�; Fk ∈ RC∕G×H×W; (1)

where each subfeature Fk captures a separated group unit response in the training process. The
purpose of the splitting is to reduce the number of parameters. Then, the corresponding impor-
tance coefficient for each subfeature is generated by an attention module. Specifically, at the
beginning of each attention unit, the input of Fk is split into two branches (e.g., Fk1; Fk2) along
the channels dimension, i.e.

EQ-TARGET;temp:intralink-;e002;116;522Fk1; Fk2 ¼ Fk∕2; Fk1; Fk2 ∈ RC∕2G×H×W: (2)

3.3 Dual-Aware Attention Module

The dual-aware attention module composes an SA unit and a CA unit, which are organized in a
parallel manner. The SA unit generates an SA map by utilizing the interspatial relationship of
features. Meanwhile, the CA unit produces a CA map by exploiting the interaction among
channels.

3.3.1 Spatial attention unit

The density map is generated by convolving the head location with a normalized Gaussian kernel
to generate a smoother training gradient. (Note: more details are referred in Sec. 4.1.2.) The
accurate location of heads is crucial to the generation of a density map. The spatial branch pro-
duces an SA map to emphasize or suppress features in different spatial locations.40 To this aim,
we build the SA unit to focus on the head region under the premise of ensuring accurate head
detection. The architecture of the SA unit is shown in Fig. 3, and the spatial-enhanced feature
map Tsa is formulated as follows:

EQ-TARGET;temp:intralink-;e003;116;283Tsa ¼ σfC7½MaxPoolðFk1Þ; AvgPoolðFk1Þ�g ⊗ Fk1; (3)

where the C7 represents a convolution layer with the kernel size of 7 × 7. MaxPoolð·Þ and
AvgPoolð·Þ denote the max pooling and average pooling on channel dimensions, respectively.
σf·g is the Sigmoid function. ⊗ denotes the element-wise multiplication.

Fig. 3 The architecture of the SA unit.
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3.3.2 Channel attention unit

The SA unit can result in error estimation for the background due to the resemblances between
the foreground and background region texture. To address this problem, we design the comple-
mentary CA unit, as shown in Fig. 4. The CA unit is formulated as follows:

EQ-TARGET;temp:intralink-;e004;116;505x ¼ XðFk2Þ ¼
1

WH

XW;H

i¼1;j¼1

Fk2ði; jÞ; x ∈ RC∕2G×1×1; (4)

EQ-TARGET;temp:intralink-;e005;116;442Tca ¼ σfIðxÞg ⊗ Fk2 ¼ σðMxþ nÞ ⊗ Fk2; (5)

where X represents the channel-aware GAP which obtains the aggregated features of the
background region. The CA unit generates channel weights (e.g., M ∈ RC∕2G×1×1 and
n ∈ RC∕2G×1×1) by IðxÞ. ⊗ denotes the element-wise multiplication. Tca ∈ RC∕2G×H×W is the
enhanced feature map.

Then, the two branches are concatenated as follows:

EQ-TARGET;temp:intralink-;e006;116;370Ti ¼ CatðTsa; TcaÞ; Ti ∈ RC∕G×H×W; (6)

where Catð·Þ represents the concatenation operation, which fuses the spatial information and
channel information of the C∕G dimension.

3.4 Aggregation Module

The aggregation module adopts a learning-based cross-group strategy to aggregate and facilitate
the exchange of feature map of different channel dimensions. It contains two operations, namely
channel concatenation and shuffle.41 The channel concatenation operation fuses the feature maps
of different dimensions. It splices all the subfeatures and form the feature map T ∈ RC×H×W ,
which is formulated as

EQ-TARGET;temp:intralink-;e007;116;217T ¼ Φ½T1; T2; · · · ; TG�; Tk ∈ RC∕G×H×W; (7)

where Φð·Þ denotes the concatenate operation from the dimension of the G group channel. Tk is
the k’th feature map.

The shuffle operation, as shown in Fig. 5, enables cross-group information communication
along the channel dimension.41 Specifically, it reassembles the feature map T to G groups whose
output has C channels. The shuffle operation consists of three steps, as shown in Fig. 5. First, the
input channel dimension is reshaped into feature tensor ðG;CÞ, and it is transposed to feature
tensor ðC;GÞ. Then, the above output is flattened and divided into G group. Finally, the sub-
groups are spliced together to form the final new feature map F 0.

Fig. 4 The architecture of the CA unit.

Zhai et al.: Group-split attention network for crowd counting

Journal of Electronic Imaging 041214-5 Jul∕Aug 2022 • Vol. 31(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 26 Jul 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4 Experimental Results and Analysis

4.1 Implementation Details

4.1.1 Training details

The training and test are performed on an NVIDIA RTX3090 GPU with the PyTorch
framework.42 All the images and the corresponding density maps are resized to 576 × 768. We
adopt the Adam optimization. The learning rate is initialized as 10−5 and reduces ×0.995 per
epoch. We supplement the training detail with random clipping and horizontal flipping
instead of vertical flipping, which minimizes overfitting and ensures the network is sufficiently
trained.

4.1.2 Density map generation

To provide an efficient supervision for generating high-quality estimated crowd density maps,
we transfer the labeled heads images to ground truth density maps. Following the work in
Ref. 14, the density maps are generated as follows.

Suppose the head coordinate as xi, we formulate the head with an impulse function as
δðx − xiÞ. The whole heads of the image can be donated as

P
N
i¼1 δðx − xiÞ, where N represents

the number of heads in the images. As the heads are dispersed, we adopt the Gaussian kernel to
blur the labeled heads as follows:

EQ-TARGET;temp:intralink-;e008;116;163MðxÞ ¼
XN
i¼1

δðx − xiÞ � GσðxÞ; (8)

where MðxÞ is the density map, � denotes the convolution operation, and Gσ denotes the
Gaussian kernel. Meanwhile, the crowd count is obtained by integrating over the density map.

G1 G2 G3 · · ·

Input C

G1 G2

CGroup

G3 · · ·

Reshape
(G,C)

Transpose
(C,G)

Output F'

Flatten

Splice

Step 1:

Step 2:

Step 3:

Fig. 5 Diagram of the shuffle operation.
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4.1.3 Evaluation metrics

The mean absolute error (MAE) represents the sum of the absolute values of the differences
between the predicted values and ground truth. It is defined as

EQ-TARGET;temp:intralink-;e009;116;692MAE ¼ 1

N

X
jzi − ẑij; (9)

where N represents the number of objects, zi is the ground truth, and ẑi is the predicted value.
The root-mean-square error (RMSE) represents the sum of the squares of the distances

between predicted values and ground truth. It is formed as

EQ-TARGET;temp:intralink-;e010;116;615RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
jzi − ẑij2

r
; (10)

where the variables have the same meaning as Eq. (9).

4.1.4 Loss function

The proposed GSANet aims to optimize the loss function as follows:

EQ-TARGET;temp:intralink-;e011;116;509loss ¼ 1

M

XM
i¼1

kFθðIiÞ − Yik22; (11)

where M is the batch size. FθðIiÞ indicates the estimated density map. Ii represents the input
image. θ denotes the learned parameter, and Yi is the density map of ground truth.

4.2 Benchmark Datasets

The comparison experiments are carried out on five challenging datasets (e.g., ShanghaiTech,
UCF_CC_50, UCF-QRNF, WorldExpo’10, and NWPU-Crowd). The characteristics of the
benchmark datasets are depicted in Table 1. The implementation details of crowd counting are
illustrated and the performance of GSANet on these different datasets is compared with other
competitors.

4.2.1 Performance on ShanghaiTech dataset

The ShanghaiTech dataset14 consists of two parts, i.e., Part_A and Part_B, with a total number of
1198 images. There are a total of 1198 labeled images with 330,165 labeled heads. The Part_A
dataset has 482 images, of which 300 are for training and the remaining 182 for test. The images
in Part_A dataset are randomly crawled from the Internet, and they are across diverse scenes and
largely varied densities. The Part_B dataset consists of 716 images, 400 images for training, and

Table 1 Characteristics of the benchmark datasets used for evaluation.

DataSet Number of images Min Max Average Total

Part_A 482 33 3199 501 241,677

Part_B 716 9 578 124 88,488

UCF_CC_50 50 94 4543 1280 63,974

UCF-QNRF 1535 49 12,865 815 1,251,642

WorldExpo’10 3980 1 253 50 199,923

NWPU-Crowd 5109 0 20,033 418 2,133,375
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316 for test. The images of Part_B are taken from the metropolis of Shanghai. By contrast,
the images in Part_B have a smaller intradataset divergence. The subjective evaluation of the
GSANet model with SOTA methods is reported in Table 2. In Part_A, the proposed method
scores 74.3 and 130.3 in MAE and RMSE. Especially, it improves the MAE by 7.2% compared
with the second-best method, MATT.51 Meanwhile, it achieves a competitive performance in
RMSE, ranking the third place among the competitors. In Part_B, the GSANet gains the results
of 8.7 and 13.9 in MAE and RMSE, which are both the best results compared with other SOTA
methods. The subjective results on the ShanghaiTech dataset are shown in Fig. 6. It proves that
the estimated crowd density map can accurately depict the distribution of the crowd. Meanwhile,
the estimated counting results are very close to the ground truth.

4.2.2 Performance on UCF_CC_50 dataset

The UCF_CC_50 dataset10 includes 50 images in different resolutions. The crowd count per
image varies from 94 to 4543. Intrinsically, not only the extremely-congested scenes but also
the limited training samples cause this dataset being extremely challenging. The comparative
results are presented in Table 3. The proposed method achieves the score of 166.4 in MAE and
235.8 in RMSE, both ranking the first place among all the SOTAs. Specifically, compared with
ASNet56 which also adopts the attention mechanism in crowd density estimation, the proposed
GSANet reduces the score of MAE by 4.8%, and RMSE by 6.3%, respectively. Compared with
PCC-Net17 and MobileCount19 which are both light-weight-based methods, the proposed
GSANet reduces the MAE by 30.7% and 41.2%, and RMSE by 25.3% and 38.4%, respectively.
The visualization of the estimated crowd density maps with counting number is depicted in
Fig. 7. It proves that the estimated crowd density maps and counting number are approximate
to the ground truth.

Table 2 Experimental results on the ShanghaiTech dataset.

Method

Part_A Part_B

MAE RMSE MAE RMSE

Zhang et al.43 181.8 277.7 32.0 49.8

GP44 120.4 179.4 12.5 18.3

MCNN14 110.2 173.2 26.4 41.3

CMTL45 101.3 152.4 20.0 31.1

TDF-CNN46 97.5 145.1 20.7 32.8

NLT47 93.8 157.2 11.8 19.2

Switching-CNN4 90.4 135.0 21.1 30.1

DecideNet16 — — 20.8 29.4

C-CNN48 88.1 141.7 14.9 22.1

AM-CNN38 87.3 132.7 15.6 26.4

SaCNN49 86.8 139.2 20.7 32.8

A-CCNN50 85.4 124.6 11.0 19.0

SAAN15 — — 16.7 28.4

MATT51 80.1 129.4 11.7 17.5

GSANet (Ours) 74.3 130.3 8.7 13.9

Note: the best results are highlighted in bold.
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4.2.3 Performance on UCF-QNRF dataset

The UCF-QNRF57 is a high-density and cross-scene dataset. It contains 1535 images with
1,251,642 annotations. Particularly, it has a wider variety of scenes, compared with other data-
sets. Following the criterion raised in Ref. 57, 1201 images are used for training and 334 images
for test. Comparative results are shown in Table 4. It shows that the GSANet scores 110.0 in

Table 3 Experimental results on the UCF_CC_50 dataset.

Methods MAE RMSE

Idrees et al.10 419.5 541.6

Zhang et al.43 467.0 498.5

MCNN14 377.6 509.1

MATT51 355.0 550.2

MobileCount19 283.1 382.6

CSRNet36 266.1 397.5

SCAR52 259.0 374.0

HA-CNN34 256.2 348.4

PCC-Net17 240.0 315.5

CAT-CNN28 235.5 324.8

LSC-CNN53 225.6 302.7

PFDNet54 205.8 289.3

D2CNet55 182.1 254.9

ASNet56 174.8 251.6

GSANet (Ours) 166.4 235.8

Note: the best results are highlighted in bold.

Fig. 6 The estimated density maps with counting number on exemplar images from the
ShanghaiTech datasets. Note: the first, second, and third rows represent the input image, the
ground truth, and the estimated results, repectively.
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MAE which ranks the first place, and 195.0 in RMSE which ranks the fourth place. Particularly,
it reduces the MAE and RMSE by 1.5% and 4.5% compared with DA2Net,61 which also lev-
erages attention module. The experimental results indicate that the proposed method is superior
to other methods in MAE, and remain competitive in RMSE. The estimated density maps with
counting number on sample images from the UCF-QNRF dataset are shown in Fig. 8. It proves
that both the estimated crowd density map and counting number are very closely related to the
ground truth.

Table 4 Experimental results on the UCF-QNRF dataset.

Methods MAE RMSE

Zhang et al.43 467.0 498.5

Idress et al.10 315.0 508.0

MCNN14 277.0 509.1

SCAR52 264.8 418.3

Switching-CNN4 228.0 445.0

NLT47 172.3 263.1

PCCNet17 148.7 247.3

CRSNet36 129.0 209.0

DENet58 121.0 205.0

LSC-CNN53 120.5 218.2

DUBNet59 116.0 178.0

HA-CNN34 118.1 180.4

DADNet60 113.2 189.4

DA2Net61 111.7 204.3

GSANet (Ours) 110.0 195.0

Note: the best results are highlighted in bold.

Fig. 7 The estimated density maps with counting number on exemplar images from the UCF_50
dataset. Note: the first, second, and third rows represent the input image, the ground truth, and the
estimated results, respectively.
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4.2.4 Performance on WorldExpo’10 dataset

The WorldExpo’10 dataset43 is a cross-scene crowd counting dataset which consists of 3,980
frames with a total number of 199, 923 labeled pedestrians. Since five different regions of inter-
est (ROI) and the perspective maps are provided for the test scenes (S1-S5), we count persons
within the ROI area following the general criterion.47,54 The performance of the proposed
GSANet against the SOTA methods are shown in Table 5. It shows that the GSANet performs

Fig. 8 The estimated density maps with counting number on exemplar images from the UCF-
QNRF dataset. Note: the first, second, and third rows represent the input image, the ground truth,
and the estimated results, respectively.

Table 5 Experimental results on the WorldExpo’10 dataset.

Methods S1 S2 S3 S4 S5 MAE (Avg.)

NLT47 2.3 22.8 16.7 19.7 3.9 13.1

Zhang et al.43 9.8 14.1 14.3 22.4 3.7 12.9

MCNN14 3.4 20.6 12.9 13.0 8.1 11.6

MSCNN62 7.8 15.4 14.9 11.8 5.8 11.7

SCAR52 1.9 13.8 9.6 29.8 3.9 11.8

DCL63 1.8 16.2 9.2 25.0 2.8 11.0

DecideNet16 2.0 13.1 8.9 17.4 4.8 9.2

CSRNet36 2.9 11.5 8.6 16.6 3.4 8.6

SANet39 2.6 13.2 9.0 13.3 3.0 8.2

DENet58 2.8 10.7 8.6 15.2 3.5 8.2

LSC-CNN53 2.9 11.3 9.4 12.3 4.3 8.0

STDNet64 1.8 12.8 10.3 7.8 2.5 7.04

EPF65 2.1 10.9 8.5 5.4 3.0 6.58

GSANet (Ours) 1.5 10.5 8.0 8.0 2.5 6.1

Note: the best results are highlighted in bold.
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best in Scenes 1, 2, 3, and 5, and ranks fourth in Scene 4. Specially, it ranks the first place in
the average MAE and exceeds the second-best method EPF65 by 7.3%. Figure 9 shows some
estimated results in the WorldExpo’10 dataset. As shown in Fig. 9, the proposed method can
accurately reflect the actual crowd distribution in all the images.

4.2.5 Performance on NWPU-Crowd dataset

The NWPU-Crowd dataset66 is currently the largest congested crowd dataset. It contains 5109
images, in which 3109 images for training, 500 images for validation, and 1500 images for test.
Compared with the aforementioned datasets, the difference is mainly reflected in two aspects.
For one thing, it has much more diversities in scales, density and background. For another,
it includes 351 negative samples (namely nobody scenes), which increase the variety of datasets.
The quantitative results for NWPU-Crowd are listed in Table 6. It shows that the proposed
GSANet scores 116.1 in MAE which ranks third, and 415.3 in RMSE which performs best
among the trackers, respectively. Especially, compared with SCAR52 which also adopts the atten-
tion mechanism, the proposed GSANet reduces the score of RMSE by 16.2%. Visualization of
estimated maps with counting numbers is shown in Fig. 10. It proves that the proposed method
performs well in the congested scenes with the accurate estimation.

Fig. 9 The estimated density maps with counting number on exemplar images from the
WorldExpo’10 dataset. Note: the first, second, and third rows represent the input image, the
ground truth, and the estimated results, respectively.

Table 6 Experimental results on the NWPU-Crowd dataset.

Methods MAE RMSE

MCNN14 232.5 714.6

SANet39 190.6 491.4

A-CCNN50 176.5 520.6

ADMG67 152.8 907.3

RAZNet68 152.8 907.3

STANet69 122.6 468.3

PCC-Net17 112.3 457.0

SCAR52 110.0 495.3

GSANet (Ours) 116.1 415.3

Note: the best results are highlighted in bold.
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4.3 Ablation Study

The effectiveness of critical components in GSANet are verified on ShanghaiTech_Part A data-
set with different combinations. The counterparts are denoted as follows:

• “baseline” refers to the vanilla model without any component.
• “baseline + SA” denotes the baseline model with single SA unit.
• “baseline + CA” represents the baseline model with single CA unit.
• “baseline + CA-SA” denotes the baseline model with CA and SA units sequentially

connected.
• “baseline + SA-CA” refers to the baseline model with SA and CA units sequentially

connected.
• “baseline + SA kCA” represents the baseline model with CA and SA parallelly combined.
• “baseline + GS + SA k CA + AGG” represents adding the GS module and aggregation

(AGG) module on the basis of the method denoted above.

The comparative results are shown in Table 7. It proves that all the critical components con-
tribute to the substantial improvements of the baseline method. It can be observed that the CA
unit performs better than SA unit in improving the accuracy. However, CA has a larger amount of
calculation than SA. When the SA and CA units are sequentially connected (i.e., “baseline +
CA_SA”method and “baseline + SA_CA”method), there is no effect in improving the accuracy,
and it even degrades the accuracy. On the contrary, when the SA and CA are concatenated in
parallel, i.e., “baseline + SA kCA”method, the scores of MAE and RMSE are reduced evidently
compared with the baseline combined single SA or CA units. Compared with the “baseline +
SA” and “baseline + CA” methods, the “baseline + SA k CA” method synergies the spatial and
channel dimensional information, so that it can alleviate the estimation error in background
regions. Therefore, the latter is better than the former. However, the accuracy is increased at
the expense of complexity in terms of GFLOPs and parameters. To address this problem, the
GS and AGGmodule are equipped and eventually led to the proposed GSANet method. It can be
seen that, with the aids of GS and AGG modules, the GFLOPs and Params decline to 7.5 and
8.684 M, respectively. It exceeds all the other combined methods and even approaches to the
baseline in efficiency. Furthermore, the final method scores 74.3 in MAE and 130.3 in RMSE,
both outperforming other ensemble methods in accuracy. This can be attributed to the shuffle
operation in AGG module, which facilitates the exchange of feature map of different channel
dimensions.

Fig. 10 The estimated density maps with counting number on exemplar images from the NWPU-
Crowd dataset. Note: the first, second, and third rows represent the input image, the ground truth,
and the estimated results, respectively.
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The qualitative comparisons of the different versions are shown in Fig. 11. Figure 11(a) is the
exemplar image which is suffered from scale variation and background cluster. Figure 11(b) is
the ground truth. Figure 11(c) indicates that the estimated results of the baseline deviate the
ground truth to a large extent. The SA unit is helpful for the accurate location of heads, as
depicted in red box of Fig. 11(d). The CA unit can alleviate the error estimation for background
regions, as depicted in the green box of Fig. 11(e). The “baseline + CA-SA” makes the problem
even worse, as shown in Fig. 11(f). The compound modes of “baseline + SA-CA” [Fig. 11(g)]
and “baseline + SA kCA” [Fig. 11(h)] boost the estimation accuracy, with the former being more

Table 7 Ablation analysis on the key components in GSANet.

Methods GFLOPs Params (M) MAE RMSE

Baseline 7.498 8.674 88.4 146.5

Baseline + CA 7.505 9.461 80.0 135.0

Baseline + SA 7.500 8.685 80.5 136.2

Baseline + CA_SA 7.505 9.462 81.3 132.7

Baseline + SA_CA 7.504 9.462 81.0 148.6

Baseline + SA k CA 7.505 9.461 76.7 131.5

Baseline + GS + SA k CA + AGG 7.500 8.684 74.3 130.3

Note: the final results are highlighted in bold.

(a) (b) (c)

(d) (e) (f)

(i)(h)(g)

Fig. 11 The qualitative results of the baseline with different components.
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effective. The final method [Fig. 11(i), GSANet] not only performs better in terms of pedestrian
dispersion and estimated counts, but also it generates density maps that are closer to the ground
truth within the green and red boxes.

5 Conclusion

GSANet is proposed for crowd counting under extremely high-density environment. The
GSANet consists of three principal modules, namely GS module, dual-aware attention module,
and aggregation module. The GS module reduces the calculation of network parameters, and
makes the model more efficient. The attention module consists of a SA unit and a CA unit. The
SA unit focuses on the spatial dependencies in the whole feature map to locate the heads accu-
rately. The CA unit is built to explore the relations between channel maps and highlight the
discriminative information in specific channels. The aggregation module enables information
communication between different sub-features. Comparative experiments on five benchmark
crowd datasets have proven the superiority of the proposed GSANet compared with the
state-of-the-art competitors in accuracy and efficiency.
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